IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i16p1975-d616897.html
   My bibliography  Save this article

Stable and Convergent Finite Difference Schemes on NonuniformTime Meshes for Distributed-Order Diffusion Equations

Author

Listed:
  • M. Luísa Morgado

    (Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
    Department of Mathematics, University of Trás-os-Montes e Alto Douro, UTAD, 5001-801 Vila Real, Portugal)

  • Magda Rebelo

    (Center for Mathematics and Applications (CMA), Department of Mathematics, NOVA School of Science and Technology, FCT NOVA, Quinta da Torre, 2829-516 Caparica, Portugal)

  • Luís L. Ferrás

    (Center of Mathematics (CMAT), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal)

Abstract

In this work, stable and convergent numerical schemes on nonuniform time meshes are proposed, for the solution of distributed-order diffusion equations. The stability and convergence of the numerical methods are proven, and a set of numerical results illustrate that the use of particular nonuniform time meshes provides more accurate results than the use of a uniform mesh, in the case of nonsmooth solutions.

Suggested Citation

  • M. Luísa Morgado & Magda Rebelo & Luís L. Ferrás, 2021. "Stable and Convergent Finite Difference Schemes on NonuniformTime Meshes for Distributed-Order Diffusion Equations," Mathematics, MDPI, vol. 9(16), pages 1-15, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1975-:d:616897
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/16/1975/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/16/1975/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. X. Wang & F. Liu & X. Chen, 2015. "Novel Second-Order Accurate Implicit Numerical Methods for the Riesz Space Distributed-Order Advection-Dispersion Equations," Advances in Mathematical Physics, Hindawi, vol. 2015, pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge E. Macías-Díaz & Nuria Reguera & Adán J. Serna-Reyes, 2021. "An Efficient Discrete Model to Approximate the Solutions of a Nonlinear Double-Fractional Two-Component Gross–Pitaevskii-Type System," Mathematics, MDPI, vol. 9(21), pages 1-14, October.
    2. Jorge E. Macías-Díaz, 2019. "Numerically Efficient Methods for Variational Fractional Wave Equations: An Explicit Four-Step Scheme," Mathematics, MDPI, vol. 7(11), pages 1-27, November.
    3. Yu, Qiang & Turner, Ian & Liu, Fawang & Vegh, Viktor, 2022. "The application of the distributed-order time fractional Bloch model to magnetic resonance imaging," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    4. Adán J. Serna-Reyes & Jorge E. Macías-Díaz, 2021. "A Mass- and Energy-Conserving Numerical Model for a Fractional Gross–Pitaevskii System in Multiple Dimensions," Mathematics, MDPI, vol. 9(15), pages 1-31, July.
    5. Adán J. Serna-Reyes & Jorge E. Macías-Díaz & Nuria Reguera, 2021. "A Convergent Three-Step Numerical Method to Solve a Double-Fractional Two-Component Bose–Einstein Condensate," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    6. Joel Alba-Pérez & Jorge E. Macías-Díaz, 2019. "Analysis of Structure-Preserving Discrete Models for Predator-Prey Systems with Anomalous Diffusion," Mathematics, MDPI, vol. 7(12), pages 1-31, December.
    7. Martínez, Romeo & Macías-Díaz, Jorge E. & Sheng, Qin, 2022. "A nonlinear discrete model for approximating a conservative multi-fractional Zakharov system: Analysis and computational simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 1-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1975-:d:616897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.