IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v200y2022icp218-239.html
   My bibliography  Save this article

An easy to implement linearized numerical scheme for fractional reaction–diffusion equations with a prehistorical nonlinear source function

Author

Listed:
  • Omran, A.K.
  • Zaky, M.A.
  • Hendy, A.S.
  • Pimenov, V.G.

Abstract

In this paper, we construct and analyze a linearized finite difference/Galerkin–Legendre spectral scheme for the nonlinear Riesz-space and Caputo-time fractional reaction–diffusion equation with prehistory. The problem is first approximated by the L1 difference method in the temporal direction, and then the Galerkin–Legendre spectral method is applied for the spatial discretization. The key advantage of the proposed method is that the implementation of the iterative approach is linear. The stability and the convergence of the semi-discrete approximation are proved by invoking the discrete fractional Halanay inequality. The stability and convergence of the fully discrete scheme are also investigated utilizing discrete fractional Grönwall inequalities, which show that the proposed method is stable and convergent. Furthermore, to verify the efficiency of our method, we provide numerical results that show a satisfactory agreement with the theoretical analysis.

Suggested Citation

  • Omran, A.K. & Zaky, M.A. & Hendy, A.S. & Pimenov, V.G., 2022. "An easy to implement linearized numerical scheme for fractional reaction–diffusion equations with a prehistorical nonlinear source function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 218-239.
  • Handle: RePEc:eee:matcom:v:200:y:2022:i:c:p:218-239
    DOI: 10.1016/j.matcom.2022.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422001562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Qifeng & Ren, Yunzhu & Lin, Xiaoman & Xu, Yinghong, 2019. "Uniform convergence of compact and BDF methods for the space fractional semilinear delay reaction–diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 91-110.
    2. Zhao, Yong-Liang & Zhu, Pei-Yong & Luo, Wei-Hua, 2018. "A fast second-order implicit scheme for non-linear time-space fractional diffusion equation with time delay and drift term," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 231-248.
    3. Mahmoud A. Zaky & Ahmed S. Hendy & Rob H. De Staelen, 2021. "Alikhanov Legendre—Galerkin Spectral Method for the Coupled Nonlinear Time-Space Fractional Ginzburg–Landau Complex System," Mathematics, MDPI, vol. 9(2), pages 1-22, January.
    4. Hafez, Ramy M. & Zaky, Mahmoud A. & Hendy, Ahmed S., 2021. "A novel spectral Galerkin/Petrov–Galerkin algorithm for the multi-dimensional space–time fractional advection–diffusion–reaction equations with nonsmooth solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 678-690.
    5. Bellen, Alfredo & Zennaro, Marino, 2013. "Numerical Methods for Delay Differential Equations," OUP Catalogue, Oxford University Press, number 9780199671373.
    6. Hao, Zhaopeng & Fan, Kai & Cao, Wanrong & Sun, Zhizhong, 2016. "A finite difference scheme for semilinear space-fractional diffusion equations with time delay," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 238-254.
    7. Liu, Pan-Ping, 2015. "Periodic solutions in an epidemic model with diffusion and delay," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 275-291.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian, Huan-Yan & Huang, Ting-Zhu & Ostermann, Alexander & Gu, Xian-Ming & Zhao, Yong-Liang, 2021. "Fast numerical schemes for nonlinear space-fractional multidelay reaction-diffusion equations by implicit integration factor methods," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    2. Vsevolod G. Sorokin & Andrei V. Vyazmin, 2022. "Nonlinear Reaction–Diffusion Equations with Delay: Partial Survey, Exact Solutions, Test Problems, and Numerical Integration," Mathematics, MDPI, vol. 10(11), pages 1-39, May.
    3. Dubey, Balram & Sajan, & Kumar, Ankit, 2021. "Stability switching and chaos in a multiple delayed prey–predator model with fear effect and anti-predator behavior," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 164-192.
    4. Guo, Lin & Zhao, Xi-Le & Gu, Xian-Ming & Zhao, Yong-Liang & Zheng, Yu-Bang & Huang, Ting-Zhu, 2021. "Three-dimensional fractional total variation regularized tensor optimized model for image deblurring," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    5. Zhang, Xue & Gu, Xian-Ming & Zhao, Yong-Liang & Li, Hu & Gu, Chuan-Yun, 2024. "Two fast and unconditionally stable finite difference methods for Riesz fractional diffusion equations with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    6. Yu, Hao & Wu, Boying & Zhang, Dazhi, 2018. "A generalized Laguerre spectral Petrov–Galerkin method for the time-fractional subdiffusion equation on the semi-infinite domain," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 96-111.
    7. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    8. Yan, Xiong-bin & Zhang, Zheng-qiang & Wei, Ting, 2022. "Simultaneous inversion of a time-dependent potential coefficient and a time source term in a time fractional diffusion-wave equation," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    9. Andrei D. Polyanin & Vsevolod G. Sorokin, 2023. "Reductions and Exact Solutions of Nonlinear Wave-Type PDEs with Proportional and More Complex Delays," Mathematics, MDPI, vol. 11(3), pages 1-25, January.
    10. Mahmoudi, Fatemeh & Tahmasebi, Mahdieh, 2022. "The convergence of a numerical scheme for additive fractional stochastic delay equations with H>12," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 219-231.
    11. Biswas, Chetna & Singh, Anup & Chopra, Manish & Das, Subir, 2023. "Study of fractional-order reaction-advection-diffusion equation using neural network method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 15-27.
    12. Abbaszadeh, Mostafa & Zaky, Mahmoud A. & Hendy, Ahmed S. & Dehghan, Mehdi, 2024. "Supervised learning and meshless methods for two-dimensional fractional PDEs on irregular domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 77-103.
    13. Benito Chen-Charpentier, 2021. "Stochastic Modeling of Plant Virus Propagation with Biological Control," Mathematics, MDPI, vol. 9(5), pages 1-16, February.
    14. Fernando Alcántara-López & Carlos Fuentes & Carlos Chávez & Jesús López-Estrada & Fernando Brambila-Paz, 2022. "Fractional Growth Model with Delay for Recurrent Outbreaks Applied to COVID-19 Data," Mathematics, MDPI, vol. 10(5), pages 1-18, March.
    15. Zhang, Qifeng & Ren, Yunzhu & Lin, Xiaoman & Xu, Yinghong, 2019. "Uniform convergence of compact and BDF methods for the space fractional semilinear delay reaction–diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 91-110.
    16. Fardi, M. & Zaky, M.A. & Hendy, A.S., 2023. "Nonuniform difference schemes for multi-term and distributed-order fractional parabolic equations with fractional Laplacian," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 614-635.
    17. A. S. Hendy & R. H. De Staelen, 2020. "Theoretical Analysis (Convergence and Stability) of a Difference Approximation for Multiterm Time Fractional Convection Diffusion-Wave Equations with Delay," Mathematics, MDPI, vol. 8(10), pages 1-20, October.
    18. Tang, Bo & Mao, Wenting & Zeng, Zhankuan, 2024. "A priori and a posteriori error estimates of a space–time Petrov–Galerkin spectral method for time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 559-572.
    19. Dipty Sharma & Paramjeet Singh, 2020. "Discontinuous Galerkin approximation for excitatory-inhibitory networks with delay and refractory periods," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(03), pages 1-25, January.
    20. Banks, H.T. & Banks, J.E. & Bommarco, Riccardo & Laubmeier, A.N. & Myers, N.J. & Rundlöf, Maj & Tillman, Kristen, 2017. "Modeling bumble bee population dynamics with delay differential equations," Ecological Modelling, Elsevier, vol. 351(C), pages 14-23.

    More about this item

    Keywords

    Fractional reaction–diffusion; Prehistory; L1 difference scheme; Galerkin–Legendre spectral method; Fractional Halanay inequalities; Discrete fractional Grönwall inequalities;
    All these keywords.

    JEL classification:

    • L1 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:200:y:2022:i:c:p:218-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.