IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v363y2019ic36.html
   My bibliography  Save this article

Several effective algorithms for nonlinear time fractional models

Author

Listed:
  • Qin, Hongyu
  • Wu, Fengyan

Abstract

In this paper, several effective algorithms are proposed to simulate the time fractional models. A complete analysis of the algorithms for nonlinear problems is presented, while the previous investigations mainly focus on construction and analysis of L1-type method for the linear time fractional problems. After that, by using the sum-of-exponentials approximation, we develop the corresponding accelerated methods. We obtain that computational cost is reduced from O(N2) to O(logN) or O(log2N), where N denotes total number of time steps. Finally, several numerical experiments on several real-world models are proposed to confirm the effectiveness of the algorithms.

Suggested Citation

  • Qin, Hongyu & Wu, Fengyan, 2019. "Several effective algorithms for nonlinear time fractional models," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
  • Handle: RePEc:eee:apmaco:v:363:y:2019:i:c:36
    DOI: 10.1016/j.amc.2019.124598
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319305909
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Xiujun & Duan, Jinqiao & Li, Dongfang, 2019. "A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction–diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 452-464.
    2. Zhang, Qifeng & Ren, Yunzhu & Lin, Xiaoman & Xu, Yinghong, 2019. "Uniform convergence of compact and BDF methods for the space fractional semilinear delay reaction–diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 91-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omran, A.K. & Zaky, M.A. & Hendy, A.S. & Pimenov, V.G., 2022. "An easy to implement linearized numerical scheme for fractional reaction–diffusion equations with a prehistorical nonlinear source function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 218-239.
    2. Zhang, Xue & Gu, Xian-Ming & Zhao, Yong-Liang & Li, Hu & Gu, Chuan-Yun, 2024. "Two fast and unconditionally stable finite difference methods for Riesz fractional diffusion equations with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    3. Zhao, Jingjun & Zhang, Yanming & Xu, Yang, 2020. "Implicit Runge-Kutta and spectral Galerkin methods for the two-dimensional nonlinear Riesz space fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    4. Li, Dongfang & Zhang, Chengjian, 2020. "Long time numerical behaviors of fractional pantograph equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 244-257.
    5. Abbaszadeh, Mostafa & Dehghan, Mehdi, 2021. "Numerical investigation of reproducing kernel particle Galerkin method for solving fractional modified distributed-order anomalous sub-diffusion equation with error estimation," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    6. Abdelkawy, M.A. & Alyami, S.A., 2021. "Legendre-Chebyshev spectral collocation method for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    7. Hafez, Ramy M. & Zaky, Mahmoud A. & Hendy, Ahmed S., 2021. "A novel spectral Galerkin/Petrov–Galerkin algorithm for the multi-dimensional space–time fractional advection–diffusion–reaction equations with nonsmooth solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 678-690.
    8. A. S. Hendy & R. H. De Staelen, 2020. "Theoretical Analysis (Convergence and Stability) of a Difference Approximation for Multiterm Time Fractional Convection Diffusion-Wave Equations with Delay," Mathematics, MDPI, vol. 8(10), pages 1-20, October.
    9. Hosseininia, M. & Heydari, M.H., 2019. "Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 400-407.
    10. Ghosh, Uttam & Pal, Swadesh & Banerjee, Malay, 2021. "Memory effect on Bazykin’s prey-predator model: Stability and bifurcation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    11. Sarita Nandal & Mahmoud A. Zaky & Rob H. De Staelen & Ahmed S. Hendy, 2021. "Numerical Simulation for a Multidimensional Fourth-Order Nonlinear Fractional Subdiffusion Model with Time Delay," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
    12. Zhao, Jingjun & Li, Yu & Xu, Yang, 2019. "An explicit fourth-order energy-preserving scheme for Riesz space fractional nonlinear wave equations," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 124-138.
    13. Jian, Huan-Yan & Huang, Ting-Zhu & Ostermann, Alexander & Gu, Xian-Ming & Zhao, Yong-Liang, 2021. "Fast numerical schemes for nonlinear space-fractional multidelay reaction-diffusion equations by implicit integration factor methods," Applied Mathematics and Computation, Elsevier, vol. 408(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:363:y:2019:i:c:36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.