IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v200y2022icp186-198.html
   My bibliography  Save this article

Numerical study of generalized 2-D nonlinear Schrödinger equation using Kansa method

Author

Listed:
  • Pathak, Maheshwar
  • Joshi, Pratibha
  • Nisar, Kottakkaran Sooppy

Abstract

The present study is influenced by the wide applications of the Schrödinger equations. Its occurrence can be easily seen in electromagnetic wave propagation, quantum mechanics, plasma physics, nonlinear optics, underwater acoustics, etc. Solving equations of this type is always difficult. In the current paper, we have discussed a very easy numerical technique which is also known as the Kansa method along with polyharmonic radial basis function for the numerical study of generalized 2-D nonlinear Schrödinger equations. The stability analysis of the present method is discussed. The efficiency and accuracy of the present method are demonstrated by considering three numerical cases along with different types of boundary conditions.

Suggested Citation

  • Pathak, Maheshwar & Joshi, Pratibha & Nisar, Kottakkaran Sooppy, 2022. "Numerical study of generalized 2-D nonlinear Schrödinger equation using Kansa method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 186-198.
  • Handle: RePEc:eee:matcom:v:200:y:2022:i:c:p:186-198
    DOI: 10.1016/j.matcom.2022.04.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422001720
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.04.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dehghan, Mehdi, 2006. "Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 71(1), pages 16-30.
    2. Ömer Oruç & Alaattin Esen & Fatih Bulut, 2016. "A Haar wavelet collocation method for coupled nonlinear Schrödinger–KdV equations," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(09), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bashan, Ali & Yagmurlu, Nuri Murat & Ucar, Yusuf & Esen, Alaattin, 2017. "An effective approach to numerical soliton solutions for the Schrödinger equation via modified cubic B-spline differential quadrature method," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 45-56.
    2. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    3. Huang, Yifei & Peng, Gang & Zhang, Gengen & Zhang, Hong, 2023. "High-order Runge–Kutta structure-preserving methods for the coupled nonlinear Schrödinger–KdV equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 603-618.
    4. Pervaiz, Nosheen & Aziz, Imran, 2020. "Haar wavelet approximation for the solution of cubic nonlinear Schrodinger equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Bulut, Fatih & Oruç, Ömer & Esen, Alaattin, 2022. "Higher order Haar wavelet method integrated with strang splitting for solving regularized long wave equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 277-290.
    6. Kaur, Navneet & Joshi, Varun, 2024. "Kuramoto-Sivashinsky equation: Numerical solution using two quintic B-splines and differential quadrature method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 105-127.
    7. Ghosh, Suchismita & Deb, Anish & Sarkar, Gautam, 2016. "Taylor series approach for function approximation using ‘estimated’ higher derivatives," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 89-101.
    8. Luo, Yidong, 2020. "Galerkin method with trigonometric basis on stable numerical differentiation," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    9. Dehghan, Mehdi & Saadatmandi, Abbas, 2009. "Variational iteration method for solving the wave equation subject to an integral conservation condition," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1448-1453.
    10. Dehghan, Mehdi & Shokri, Ali, 2008. "A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 700-715.
    11. Guo, Geyang & Lü, Shujuan & Liu, Bo, 2015. "Unconditional stability of alternating difference schemes with variable time steplengthes for dispersive equation," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 249-259.
    12. Mohammadi, Reza, 2018. "Smooth Quintic spline approximation for nonlinear Schrödinger equations with variable coefficients in one and two dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 204-215.
    13. Li, Jiyong, 2021. "Convergence analysis of a symmetric exponential integrator Fourier pseudo-spectral scheme for the Klein–Gordon–Dirac equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 691-713.
    14. Wang, Hanquan & Ma, Xiu & Lu, Junliang & Gao, Wen, 2017. "An efficient time-splitting compact finite difference method for Gross–Pitaevskii equation," Applied Mathematics and Computation, Elsevier, vol. 297(C), pages 131-144.
    15. Dehghan, Mehdi & Mohebbi, Akbar, 2008. "High-order compact boundary value method for the solution of unsteady convection–diffusion problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 683-699.
    16. Dehghan, Mehdi & Gharibi, Zeinab, 2021. "Numerical analysis of fully discrete energy stable weak Galerkin finite element Scheme for a coupled Cahn-Hilliard-Navier-Stokes phase-field model," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    17. Kenzu Abdella & Jeet Trivedi, 2020. "Solving Multi-Point Boundary Value Problems Using Sinc-Derivative Interpolation," Mathematics, MDPI, vol. 8(12), pages 1-14, November.
    18. Nehad Ali Shah & Ioannis Dassios & Essam R. El-Zahar & Jae Dong Chung & Somaye Taherifar, 2021. "The Variational Iteration Transform Method for Solving the Time-Fractional Fornberg–Whitham Equation and Comparison with Decomposition Transform Method," Mathematics, MDPI, vol. 9(2), pages 1-14, January.
    19. Shi, Dongyang & Liao, Xin & Wang, Lele, 2016. "Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 298-310.
    20. Gao, Yali & Mei, Liquan & Li, Rui, 2018. "Galerkin methods for the Davey–Stewartson equations," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 144-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:200:y:2022:i:c:p:186-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.