IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v208y2023icp603-618.html
   My bibliography  Save this article

High-order Runge–Kutta structure-preserving methods for the coupled nonlinear Schrödinger–KdV equations

Author

Listed:
  • Huang, Yifei
  • Peng, Gang
  • Zhang, Gengen
  • Zhang, Hong

Abstract

A novel class of high-order Runge–Kutta structure-preserving methods for the coupled nonlinear Schrödinger–KdV equations is proposed and analyzed. With the aid of the quadratic auxiliary variable, an equivalent system is obtained from the original problem. The Fourier pseudo-spectral method is employed in spatial discretization and the symplectic Runge–Kutta method is utilized for the resulting semi-discrete system to arrive at a high-order fully discrete scheme. Simultaneously, the conservation of the original multiple invariants for the schemes are rigorously proven. Numerical experiments are performed to verify the theoretical analysis.

Suggested Citation

  • Huang, Yifei & Peng, Gang & Zhang, Gengen & Zhang, Hong, 2023. "High-order Runge–Kutta structure-preserving methods for the coupled nonlinear Schrödinger–KdV equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 603-618.
  • Handle: RePEc:eee:matcom:v:208:y:2023:i:c:p:603-618
    DOI: 10.1016/j.matcom.2023.01.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423000459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.01.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barletti, L. & Brugnano, L. & Frasca Caccia, G. & Iavernaro, F., 2018. "Energy-conserving methods for the nonlinear Schrödinger equation," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 3-18.
    2. Ömer Oruç & Alaattin Esen & Fatih Bulut, 2016. "A Haar wavelet collocation method for coupled nonlinear Schrödinger–KdV equations," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(09), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bashan, Ali & Yagmurlu, Nuri Murat & Ucar, Yusuf & Esen, Alaattin, 2017. "An effective approach to numerical soliton solutions for the Schrödinger equation via modified cubic B-spline differential quadrature method," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 45-56.
    2. Pathak, Maheshwar & Joshi, Pratibha & Nisar, Kottakkaran Sooppy, 2022. "Numerical study of generalized 2-D nonlinear Schrödinger equation using Kansa method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 186-198.
    3. Vyacheslav Trofimov & Maria Loginova & Mikhail Fedotov & Daniil Tikhvinskii & Yongqiang Yang & Boyuan Zheng, 2022. "Conservative Finite-Difference Scheme for 1D Ginzburg–Landau Equation," Mathematics, MDPI, vol. 10(11), pages 1-24, June.
    4. Pervaiz, Nosheen & Aziz, Imran, 2020. "Haar wavelet approximation for the solution of cubic nonlinear Schrodinger equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Zhang, Fan & Sun, Hai-Wei & Sun, Tao, 2024. "Efficient and unconditionally energy stable exponential-SAV schemes for the phase field crystal equation," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    6. Frasca-Caccia, Gianluca & Hydon, Peter E., 2021. "Numerical preservation of multiple local conservation laws," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    7. Bulut, Fatih & Oruç, Ömer & Esen, Alaattin, 2022. "Higher order Haar wavelet method integrated with strang splitting for solving regularized long wave equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 277-290.
    8. Luigi Brugnano & Gianluca Frasca-Caccia & Felice Iavernaro, 2019. "Line Integral Solution of Hamiltonian PDEs," Mathematics, MDPI, vol. 7(3), pages 1-28, March.
    9. Vyacheslav Trofimov & Maria Loginova, 2021. "Conservative Finite-Difference Schemes for Two Nonlinear Schrödinger Equations Describing Frequency Tripling in a Medium with Cubic Nonlinearity: Competition of Invariants," Mathematics, MDPI, vol. 9(21), pages 1-26, October.
    10. Li, Jiyong, 2021. "Convergence analysis of a symmetric exponential integrator Fourier pseudo-spectral scheme for the Klein–Gordon–Dirac equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 691-713.
    11. Amodio, Pierluigi & Brugnano, Luigi & Iavernaro, Felice, 2019. "A note on the continuous-stage Runge–Kutta(–Nyström) formulation of Hamiltonian Boundary Value Methods (HBVMs)," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    12. Li, Haochen & Jiang, Chaolong & Lv, Zhongquan, 2018. "A Galerkin energy-preserving method for two dimensional nonlinear Schrödinger equation," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 16-27.
    13. Auzinger, Winfried & Hofstätter, Harald & Koch, Othmar & Kropielnicka, Karolina & Singh, Pranav, 2019. "Time adaptive Zassenhaus splittings for the Schrödinger equation in the semiclassical regime," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:208:y:2023:i:c:p:603-618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.