IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v410y2021ics0096300321005762.html
   My bibliography  Save this article

Numerical analysis of fully discrete energy stable weak Galerkin finite element Scheme for a coupled Cahn-Hilliard-Navier-Stokes phase-field model

Author

Listed:
  • Dehghan, Mehdi
  • Gharibi, Zeinab

Abstract

The Cahn-Hilliard phase-field model of two-phase incompressible flows, namely the Cahn-Hilliard-Navier-Stokes (CH-NS) problem represents the fundamental building blocks of hydrodynamic phase-field models for multiphase fluid flow dynamics. Since finding solution (numerically and theoretically) of the CH-NS system is non-trivial (owing to the coupling between the Navier-Stokes equation and the Cahn-Hilliard equation), in this paper, we propose and analyze a numerical scheme with the following properties: (1) first-order in time, (2) nonlinear, (3) fully coupled and (4) energy stable; for solving CH-NS system, in the framework of weak Galerkin (WG) method. More precisely, we employ the WG method, which uses discontinuous functions to construct the approximation space, and the first-order backward Euler (implicit) method for space and time discretizations, respectively. We first recall the corresponding variational formulation, and then summarize the main WG method ingredients that are required for our discrete analysis. In particular, in order to define the weak discrete bilinear (and trilinear) form, whose continuous version involves classical differential operators, we propose two well-known alternatives for gradient and divergence operators onto a suitable polynomial subspace. Next, we show that the weak global discrete bilinear form satisfies the hypotheses required by the Lax-Milgram lemma. In this way, we derive the associated a priori error estimates for phase field variable, chemical potential, velocity and further the pressure in L2 norm. Finally, several numerical results confirming the theoretical rates of convergence and illustrating the good performance of the method for simulation influence of surface tension, small density variations, and the driven cavity are presented.

Suggested Citation

  • Dehghan, Mehdi & Gharibi, Zeinab, 2021. "Numerical analysis of fully discrete energy stable weak Galerkin finite element Scheme for a coupled Cahn-Hilliard-Navier-Stokes phase-field model," Applied Mathematics and Computation, Elsevier, vol. 410(C).
  • Handle: RePEc:eee:apmaco:v:410:y:2021:i:c:s0096300321005762
    DOI: 10.1016/j.amc.2021.126487
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321005762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dehghan, Mehdi, 2006. "Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 71(1), pages 16-30.
    2. Zhang, Tie & Chen, Yanli, 2019. "An analysis of the weak Galerkin finite element method for convection–diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 612-621.
    3. Zhang, Tao & Li, Xiaolin, 2020. "Analysis of the element-free Galerkin method with penalty for general second-order elliptic problems," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junxiang Yang & Yibao Li & Junseok Kim, 2022. "A Correct Benchmark Problem of a Two-Dimensional Droplet Deformation in Simple Shear Flow," Mathematics, MDPI, vol. 10(21), pages 1-10, November.
    2. Tan, Zhijun & Yang, Junxiang & Chen, Jianjun & Kim, Junseok, 2023. "An efficient time-dependent auxiliary variable approach for the three-phase conservative Allen–Cahn fluids," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    3. Li, Yaxiang & Wang, Jiangxing, 2022. "Unconditional convergence analysis of stabilized FEM-SAV method for Cahn-Hilliard equation," Applied Mathematics and Computation, Elsevier, vol. 419(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    2. Sun, Fengxin & Wang, Jufeng & Xu, Ying, 2024. "An improved stabilized element-free Galerkin method for solving steady Stokes flow problems," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    3. Li, Wenjuan & Gao, Fuzheng & Cui, Jintao, 2024. "A weak Galerkin finite element method for nonlinear convection-diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 461(C).
    4. Ghosh, Suchismita & Deb, Anish & Sarkar, Gautam, 2016. "Taylor series approach for function approximation using ‘estimated’ higher derivatives," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 89-101.
    5. Guo, Geyang & Lü, Shujuan & Liu, Bo, 2015. "Unconditional stability of alternating difference schemes with variable time steplengthes for dispersive equation," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 249-259.
    6. Qi, Wenya & Song, Lunji, 2020. "Weak Galerkin method with implicit θ-schemes for second-order parabolic problems," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    7. Mohammadi, Reza, 2018. "Smooth Quintic spline approximation for nonlinear Schrödinger equations with variable coefficients in one and two dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 204-215.
    8. Wang, Hanquan & Ma, Xiu & Lu, Junliang & Gao, Wen, 2017. "An efficient time-splitting compact finite difference method for Gross–Pitaevskii equation," Applied Mathematics and Computation, Elsevier, vol. 297(C), pages 131-144.
    9. Dehghan, Mehdi & Mohebbi, Akbar, 2008. "High-order compact boundary value method for the solution of unsteady convection–diffusion problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 683-699.
    10. Nehad Ali Shah & Ioannis Dassios & Essam R. El-Zahar & Jae Dong Chung & Somaye Taherifar, 2021. "The Variational Iteration Transform Method for Solving the Time-Fractional Fornberg–Whitham Equation and Comparison with Decomposition Transform Method," Mathematics, MDPI, vol. 9(2), pages 1-14, January.
    11. Pathak, Maheshwar & Joshi, Pratibha & Nisar, Kottakkaran Sooppy, 2022. "Numerical study of generalized 2-D nonlinear Schrödinger equation using Kansa method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 186-198.
    12. Kaur, Navneet & Joshi, Varun, 2024. "Kuramoto-Sivashinsky equation: Numerical solution using two quintic B-splines and differential quadrature method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 105-127.
    13. Luo, Yidong, 2020. "Galerkin method with trigonometric basis on stable numerical differentiation," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    14. Dehghan, Mehdi & Saadatmandi, Abbas, 2009. "Variational iteration method for solving the wave equation subject to an integral conservation condition," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1448-1453.
    15. Dehghan, Mehdi & Shokri, Ali, 2008. "A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 700-715.
    16. Kenzu Abdella & Jeet Trivedi, 2020. "Solving Multi-Point Boundary Value Problems Using Sinc-Derivative Interpolation," Mathematics, MDPI, vol. 8(12), pages 1-14, November.
    17. Shi, Dongyang & Liao, Xin & Wang, Lele, 2016. "Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 298-310.
    18. Gao, Yali & Mei, Liquan & Li, Rui, 2018. "Galerkin methods for the Davey–Stewartson equations," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 144-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:410:y:2021:i:c:s0096300321005762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.