IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v199y2022icp81-99.html
   My bibliography  Save this article

Vibrations of axially excited rotating micro-beams heated by a high-intensity laser in light of a thermo-elastic model including the memory-dependent derivative

Author

Listed:
  • Abouelregal, Ahmed E.
  • Mohammed, Fawzy A.
  • Benhamed, Moez
  • Zakria, Adam
  • Ahmed, Ibrahim-Elkhalil

Abstract

The introduction of the memory effect into thermal and mechanical models makes them more adaptive than the fractional effect. Actually, in this concept, not only the time delay but also the kernel function can be adjusted arbitrarily to meet the requirements of different dynamic processes. Furthermore, because of the remarkable thermomechanical characteristics of the microstructures, research into the rotating beam material may effectively improve the mechanical behavior of rotating systems. This paper addresses the thermoelastic vibration of spinning microbeams using a heat transfer model with a memory-dependent derivative (MDD). The influence of the centrifugal tensile force owing to rotation is taken into account, and the length-scale effect is addressed using modified couple stress theory (MCST). The equations controlling axially excited spinning microbeams have been established using the Euler–Bernoulli assumptions and Hamilton’s approach. Time-dependent variable temperature and laser pulses are responsible for thermoelastic vibrations in the microbeam. The Laplace transform approach is applied to establish a general solution for the analyzed fields. Some graphs are shown to demonstrate the effects of the length-scale, angular velocity of rotation, time-delay factor, and various types of kernel function on all studied fields.

Suggested Citation

  • Abouelregal, Ahmed E. & Mohammed, Fawzy A. & Benhamed, Moez & Zakria, Adam & Ahmed, Ibrahim-Elkhalil, 2022. "Vibrations of axially excited rotating micro-beams heated by a high-intensity laser in light of a thermo-elastic model including the memory-dependent derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 81-99.
  • Handle: RePEc:eee:matcom:v:199:y:2022:i:c:p:81-99
    DOI: 10.1016/j.matcom.2022.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422001197
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed E. Abouelregal & Marin Marin, 2020. "The Size-Dependent Thermoelastic Vibrations of Nanobeams Subjected to Harmonic Excitation and Rectified Sine Wave Heating," Mathematics, MDPI, vol. 8(7), pages 1-13, July.
    2. Wang, Jin-Liang & Li, Hui-Feng, 2021. "Memory-dependent derivative versus fractional derivative (II): Remodelling diffusion process," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doaa Atta & Ahmed E. Abouelregal & Fahad Alsharari, 2022. "Thermoelastic Analysis of Functionally Graded Nanobeams via Fractional Heat Transfer Model with Nonlocal Kernels," Mathematics, MDPI, vol. 10(24), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aatef Hobiny & Ibrahim Abbas, 2022. "Finite Element Analysis of Generalized Thermoelastic Interaction for Semiconductor Materials under Varying Thermal Conductivity," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
    2. Maged Faihan Alotaibi & Eied Mahmoud Khalil & Mahmoud Youssef Abd-Rabbou & Marin Marin, 2022. "The Classicality and Quantumness of the Driven Qubit–Photon–Magnon System," Mathematics, MDPI, vol. 10(23), pages 1-11, November.
    3. Abdulkafi M. Saeed & Kh. Lotfy & Alaa A. El-Bary, 2022. "Effect of Variable Thermal Conductivity and Magnetic Field for the Generated Photo-Thermal Waves on Microelongated Semiconductor," Mathematics, MDPI, vol. 10(22), pages 1-18, November.
    4. Ahmed E. Abouelregal & Marin Marin & Fahad Alsharari, 2022. "Thermoelastic Plane Waves in Materials with a Microstructure Based on Micropolar Thermoelasticity with Two Temperature and Higher Order Time Derivatives," Mathematics, MDPI, vol. 10(9), pages 1-21, May.
    5. Rana Yousif & Aref Jeribi & Saad Al-Azzawi, 2023. "Fractional-Order SEIRD Model for Global COVID-19 Outbreak," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    6. Xiao-Ting He & Meng-Qiao Zhang & Bo Pang & Jun-Yi Sun, 2022. "Solution of the Thermoelastic Problem for a Two-Dimensional Curved Beam with Bimodular Effects," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    7. Ammar Melaibari & Ahmed Amine Daikh & Muhammad Basha & Ahmed W. Abdalla & Ramzi Othman & Khalid H. Almitani & Mostafa A. Hamed & Alaa Abdelrahman & Mohamed A. Eltaher, 2022. "Free Vibration of FG-CNTRCs Nano-Plates/Shells with Temperature-Dependent Properties," Mathematics, MDPI, vol. 10(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:199:y:2022:i:c:p:81-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.