IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v391y2021ics0096300320305816.html
   My bibliography  Save this article

Memory-dependent derivative versus fractional derivative (II): Remodelling diffusion process

Author

Listed:
  • Wang, Jin-Liang
  • Li, Hui-Feng

Abstract

The memory-dependent derivative (MDD) is a new substitution for the fractional derivative (FD). It reflects the memory effect in a more distinct way. As an application, the representative heat diffusion process is remodeled with it. In fact, due to the existence of heat-conduction paradox, the time-space evolution mechanisms of this process are challenges to the modelers. The paradox cann’t be ascribed to the classical Fourier law, and the results show that the newly-constructed temporal MDD model is more reasonable than the Maxwell-Cattaneo, the temporal FD, the spatial FD and the common ones. Moreover, different mediums may accord with different memory times and weighted functions. This freedom of choice reflects the flexibility of MDD in modelling. It can be borrowed for exploring other diffusion problems.

Suggested Citation

  • Wang, Jin-Liang & Li, Hui-Feng, 2021. "Memory-dependent derivative versus fractional derivative (II): Remodelling diffusion process," Applied Mathematics and Computation, Elsevier, vol. 391(C).
  • Handle: RePEc:eee:apmaco:v:391:y:2021:i:c:s0096300320305816
    DOI: 10.1016/j.amc.2020.125627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320305816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Jingjun & Zhang, Yanming & Xu, Yang, 2020. "Implicit Runge-Kutta and spectral Galerkin methods for the two-dimensional nonlinear Riesz space fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abouelregal, Ahmed E. & Mohammed, Fawzy A. & Benhamed, Moez & Zakria, Adam & Ahmed, Ibrahim-Elkhalil, 2022. "Vibrations of axially excited rotating micro-beams heated by a high-intensity laser in light of a thermo-elastic model including the memory-dependent derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 81-99.
    2. Rana Yousif & Aref Jeribi & Saad Al-Azzawi, 2023. "Fractional-Order SEIRD Model for Global COVID-19 Outbreak," Mathematics, MDPI, vol. 11(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saffarian, Marziyeh & Mohebbi, Akbar, 2022. "Finite difference/spectral element method for one and two-dimensional Riesz space fractional advection–dispersion equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 348-370.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:391:y:2021:i:c:s0096300320305816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.