IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i4p583-d748486.html
   My bibliography  Save this article

Free Vibration of FG-CNTRCs Nano-Plates/Shells with Temperature-Dependent Properties

Author

Listed:
  • Ammar Melaibari

    (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 80204, Saudi Arabia)

  • Ahmed Amine Daikh

    (Department of Technology, University Centre of Naama, Naama 45000, Algeria
    Laboratoire d’Etude des Structures et de Mécanique des Matériaux, Département de Génie Civil, Faculté des Sciences et de la Technologie, Université Mustapha Stambouli, B.P. 305, Mascara 29000, Algeria)

  • Muhammad Basha

    (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 80204, Saudi Arabia)

  • Ahmed W. Abdalla

    (Mechanical Design and Production Department, Faculty of Engineering, Zagazig University, P.O. Box 44519, Zagazig 44519, Egypt)

  • Ramzi Othman

    (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 80204, Saudi Arabia)

  • Khalid H. Almitani

    (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 80204, Saudi Arabia)

  • Mostafa A. Hamed

    (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 80204, Saudi Arabia)

  • Alaa Abdelrahman

    (Mechanical Design and Production Department, Faculty of Engineering, Zagazig University, P.O. Box 44519, Zagazig 44519, Egypt)

  • Mohamed A. Eltaher

    (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 80204, Saudi Arabia
    Mechanical Design and Production Department, Faculty of Engineering, Zagazig University, P.O. Box 44519, Zagazig 44519, Egypt)

Abstract

This article presents a mathematical continuum model to analyze the free vibration response of cross-ply carbon-nanotube-reinforced composite laminated nanoplates and nanoshells, including microstructure and length scale effects. Different shell geometries, such as plate (infinite radii), spherical, cylindrical, hyperbolic-paraboloid and elliptical-paraboloid are considered in the analysis. By employing Hamilton’s variational principle, the equations of motion are derived based on hyperbolic sine function shear deformation theory. Then, the derived equations are solved analytically using the Galerkin approach. Two types of material distribution are proposed. Higher-order nonlocal strain gradient theory is employed to capture influences of shear deformation, length scale parameter (nonlocal) and material/microstructurescale parameter (gradient). Temperature-dependent material properties are considered. The validation of the proposed mathematical model is presented. Detailed parametric analyses are carried out to highlight the effects of the carbon nanotubes (CNT) distribution pattern, the thickness stretching, the geometry of the plate/shell, the boundary conditions, the total number of layers, the length scale and the material scale parameters, on the vibrational frequencies of CNTRC laminated nanoplates and nanoshells.

Suggested Citation

  • Ammar Melaibari & Ahmed Amine Daikh & Muhammad Basha & Ahmed W. Abdalla & Ramzi Othman & Khalid H. Almitani & Mostafa A. Hamed & Alaa Abdelrahman & Mohamed A. Eltaher, 2022. "Free Vibration of FG-CNTRCs Nano-Plates/Shells with Temperature-Dependent Properties," Mathematics, MDPI, vol. 10(4), pages 1-24, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:583-:d:748486
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/4/583/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/4/583/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eltaher, Mohamed A. & Mohamed, Nazira, 2020. "Nonlinear stability and vibration of imperfect CNTs by Doublet mechanics," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    2. Ahmed E. Abouelregal & Marin Marin, 2020. "The Size-Dependent Thermoelastic Vibrations of Nanobeams Subjected to Harmonic Excitation and Rectified Sine Wave Heating," Mathematics, MDPI, vol. 8(7), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emad E. Ghandourah & Ahmed Amine Daikh & Samir Khatir & Abdulsalam M. Alhawsawi & Essam M. Banoqitah & Mohamed A. Eltaher, 2023. "A Dynamic Analysis of Porous Coated Functionally Graded Nanoshells Rested on Viscoelastic Medium," Mathematics, MDPI, vol. 11(10), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aatef Hobiny & Ibrahim Abbas, 2022. "Finite Element Analysis of Generalized Thermoelastic Interaction for Semiconductor Materials under Varying Thermal Conductivity," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
    2. Mohamed A. Attia & Ammar Melaibari & Rabab A. Shanab & Mohamed A. Eltaher, 2022. "Dynamic Analysis of Sigmoid Bidirectional FG Microbeams under Moving Load and Thermal Load: Analytical Laplace Solution," Mathematics, MDPI, vol. 10(24), pages 1-22, December.
    3. Maged Faihan Alotaibi & Eied Mahmoud Khalil & Mahmoud Youssef Abd-Rabbou & Marin Marin, 2022. "The Classicality and Quantumness of the Driven Qubit–Photon–Magnon System," Mathematics, MDPI, vol. 10(23), pages 1-11, November.
    4. Abdulkafi M. Saeed & Kh. Lotfy & Alaa A. El-Bary, 2022. "Effect of Variable Thermal Conductivity and Magnetic Field for the Generated Photo-Thermal Waves on Microelongated Semiconductor," Mathematics, MDPI, vol. 10(22), pages 1-18, November.
    5. Ahmed E. Abouelregal & Marin Marin & Fahad Alsharari, 2022. "Thermoelastic Plane Waves in Materials with a Microstructure Based on Micropolar Thermoelasticity with Two Temperature and Higher Order Time Derivatives," Mathematics, MDPI, vol. 10(9), pages 1-21, May.
    6. Emad E. Ghandourah & Ahmed A. Daikh & Abdulsalam M. Alhawsawi & Othman A. Fallatah & Mohamed A. Eltaher, 2022. "Bending and Buckling of FG-GRNC Laminated Plates via Quasi-3D Nonlocal Strain Gradient Theory," Mathematics, MDPI, vol. 10(8), pages 1-37, April.
    7. Xiao-Ting He & Meng-Qiao Zhang & Bo Pang & Jun-Yi Sun, 2022. "Solution of the Thermoelastic Problem for a Two-Dimensional Curved Beam with Bimodular Effects," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    8. Nazira Mohamed & Salwa A. Mohamed & Mohamed A. Eltaher, 2022. "Nonlinear Static Stability of Imperfect Bio-Inspired Helicoidal Composite Beams," Mathematics, MDPI, vol. 10(7), pages 1-20, March.
    9. Abouelregal, Ahmed E. & Mohammed, Fawzy A. & Benhamed, Moez & Zakria, Adam & Ahmed, Ibrahim-Elkhalil, 2022. "Vibrations of axially excited rotating micro-beams heated by a high-intensity laser in light of a thermo-elastic model including the memory-dependent derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 81-99.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:583-:d:748486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.