IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i23p4458-d984522.html
   My bibliography  Save this article

The Classicality and Quantumness of the Driven Qubit–Photon–Magnon System

Author

Listed:
  • Maged Faihan Alotaibi

    (Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    These authors contributed equally to this work.)

  • Eied Mahmoud Khalil

    (Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
    Mathematics Department, Faculty of Science, Al-Azhar University, P.O. Box 11884, Cairo 11884, Egypt
    These authors contributed equally to this work.)

  • Mahmoud Youssef Abd-Rabbou

    (Mathematics Department, Faculty of Science, Al-Azhar University, P.O. Box 11884, Cairo 11884, Egypt
    These authors contributed equally to this work.)

  • Marin Marin

    (Department of Mathematics and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania
    These authors contributed equally to this work.)

Abstract

The hybrid architecture of the driven qubit–photon–magnon system has recently emerged as a promising candidate for novel quantum technologies. In this paper, we introduce the effective wave-function of a superconducting single qubit and a magnon mode contained within a cavity resonator and an external field. The non-classicality of the magnon and resonator modes are investigated by using the negative values of the Wigner function. Additionally, we discuss the non-classicality of the qubit state via the Wigner–Yanase skew information. We find that the mixture angle of the qubit–resonator plays a controllable role in non-classicality. However, the strength of the magnon–photon increases the non-classical behaviour of the system.

Suggested Citation

  • Maged Faihan Alotaibi & Eied Mahmoud Khalil & Mahmoud Youssef Abd-Rabbou & Marin Marin, 2022. "The Classicality and Quantumness of the Driven Qubit–Photon–Magnon System," Mathematics, MDPI, vol. 10(23), pages 1-11, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4458-:d:984522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/23/4458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/23/4458/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed E. Abouelregal & Marin Marin, 2020. "The Size-Dependent Thermoelastic Vibrations of Nanobeams Subjected to Harmonic Excitation and Rectified Sine Wave Heating," Mathematics, MDPI, vol. 8(7), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aatef Hobiny & Ibrahim Abbas, 2022. "Finite Element Analysis of Generalized Thermoelastic Interaction for Semiconductor Materials under Varying Thermal Conductivity," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
    2. Abdulkafi M. Saeed & Kh. Lotfy & Alaa A. El-Bary, 2022. "Effect of Variable Thermal Conductivity and Magnetic Field for the Generated Photo-Thermal Waves on Microelongated Semiconductor," Mathematics, MDPI, vol. 10(22), pages 1-18, November.
    3. Ahmed E. Abouelregal & Marin Marin & Fahad Alsharari, 2022. "Thermoelastic Plane Waves in Materials with a Microstructure Based on Micropolar Thermoelasticity with Two Temperature and Higher Order Time Derivatives," Mathematics, MDPI, vol. 10(9), pages 1-21, May.
    4. Xiao-Ting He & Meng-Qiao Zhang & Bo Pang & Jun-Yi Sun, 2022. "Solution of the Thermoelastic Problem for a Two-Dimensional Curved Beam with Bimodular Effects," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    5. Abouelregal, Ahmed E. & Mohammed, Fawzy A. & Benhamed, Moez & Zakria, Adam & Ahmed, Ibrahim-Elkhalil, 2022. "Vibrations of axially excited rotating micro-beams heated by a high-intensity laser in light of a thermo-elastic model including the memory-dependent derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 81-99.
    6. Ammar Melaibari & Ahmed Amine Daikh & Muhammad Basha & Ahmed W. Abdalla & Ramzi Othman & Khalid H. Almitani & Mostafa A. Hamed & Alaa Abdelrahman & Mohamed A. Eltaher, 2022. "Free Vibration of FG-CNTRCs Nano-Plates/Shells with Temperature-Dependent Properties," Mathematics, MDPI, vol. 10(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4458-:d:984522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.