IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v197y2022icp91-104.html
   My bibliography  Save this article

On the evolution of the COVID-19 epidemiological parameters using only the series of deceased. A study of the Spanish outbreak using Genetic Algorithms

Author

Listed:
  • Acosta-González, Eduardo
  • Andrada-Félix, Julián
  • Fernández-Rodríguez, Fernando

Abstract

We propose a methodology for estimating the evolution of the epidemiological parameters of a SIRD model (acronym of Susceptible, Infected, Recovered and Deceased individuals) which allows to evaluate the sanitary measures taken by the government, for the COVID-19 in the Spanish outbreak. In our methodology the only information required for estimating these parameters is the time series of deceased people; due to the number of asymptomatic people produced by the COVID-19, it is not possible to know the actual number of infected people at any given time. Therefore, among the different time series that quantify the pandemic we consider just the number of deceased people to minimize the square sum of errors.

Suggested Citation

  • Acosta-González, Eduardo & Andrada-Félix, Julián & Fernández-Rodríguez, Fernando, 2022. "On the evolution of the COVID-19 epidemiological parameters using only the series of deceased. A study of the Spanish outbreak using Genetic Algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 91-104.
  • Handle: RePEc:eee:matcom:v:197:y:2022:i:c:p:91-104
    DOI: 10.1016/j.matcom.2022.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542200060X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lijun Pei & Mengyu Zhang & Toshikazu Kuniya, 2021. "Long-Term Predictions of COVID-19 in Some Countries by the SIRD Model," Complexity, Hindawi, vol. 2021, pages 1-18, June.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Yarsky, P., 2021. "Using a genetic algorithm to fit parameters of a COVID-19 SEIR model for US states," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 687-695.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omame, Andrew & Abbas, Mujahid & Din, Anwarud, 2023. "Global asymptotic stability, extinction and ergodic stationary distribution in a stochastic model for dual variants of SARS-CoV-2," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 302-336.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    2. Beran, Jan & Feng, Yuanhua, 1999. "Local Polynomial Estimation with a FARIMA-GARCH Error Process," CoFE Discussion Papers 99/08, University of Konstanz, Center of Finance and Econometrics (CoFE).
    3. Corbet, Shaen & Larkin, Charles & McMullan, Caroline, 2020. "The impact of industrial incidents on stock market volatility," Research in International Business and Finance, Elsevier, vol. 52(C).
    4. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    5. Lahmiri, Salim & Bekiros, Stelios, 2017. "Disturbances and complexity in volatility time series," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 38-42.
    6. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.
    7. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.
    8. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    9. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
    10. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    11. Bentes, Sonia R. & Menezes, Rui, 2013. "On the predictability of realized volatility using feasible GLS," Journal of Asian Economics, Elsevier, vol. 28(C), pages 58-66.
    12. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    13. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    14. SILVESTRINI, Andrea & VEREDAS, David, 2005. "Temporal aggregation of univariate linear time series models," LIDAM Discussion Papers CORE 2005059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. repec:wyi:journl:002087 is not listed on IDEAS
    16. Hallin, Marc & La Vecchia, Davide, 2020. "A Simple R-estimation method for semiparametric duration models," Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
    17. Dhanya Jothimani & Ravi Shankar & Surendra S. Yadav, 2016. "Discrete Wavelet Transform-Based Prediction of Stock Index: A Study on National Stock Exchange Fifty Index," Papers 1605.07278, arXiv.org.
    18. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    19. Mai, Nhat Chi, 2022. "Tác động của lạm phát đến hoạt động của thị trường chứng khoán ở Việt Nam: Kiểm chứng bằng mô hình GARCH," OSF Preprints azcqd, Center for Open Science.
    20. Angelidis, Dimitrios & Koulakiotis Athanasios & Kiohos Apostolos, 2018. "Feedback Trading Strategies: The Case of Greece and Cyprus," South East European Journal of Economics and Business, Sciendo, vol. 13(1), pages 93-99, June.
    21. Mohamed Es-Sanoun & Jude Gohou & Mounir Benboubker, 2023. "Testing of Herd Behavior In african Stock Markets During COVID-19 Pandemic [Essai de vérification du comportement mimétique dans les marchés boursiers africains au cours de la crise de covid-19]," Post-Print hal-04144289, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:197:y:2022:i:c:p:91-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.