IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v175y2020icp192-201.html
   My bibliography  Save this article

Use of a structure aware discretisation algorithm for Bayesian networks applied to water quality predictions

Author

Listed:
  • Mayfield, Helen J.
  • Bertone, Edoardo
  • Smith, Carl
  • Sahin, Oz

Abstract

Bayesian networks have become a popular modelling technique in many fields, however there are several design decisions that, if poorly made, can result in models with insufficient evidence to make good predictions. One such decision is how to discretise the continuous nodes. The lack of a commonly accepted algorithm for achieving this makes it a difficult task for novice data modellers. We present a structure aware discretisation algorithm that minimises the number of missing values in the conditional probability tables by taking into account the network structure. It also prevents users from having to specify the exact number of bins. Results from two water quality case studies in south-east Queensland showed that the algorithm has potential to improve the discretisation process over equal case discretisation and demonstrates the suitability of Bayesian networks for this field.

Suggested Citation

  • Mayfield, Helen J. & Bertone, Edoardo & Smith, Carl & Sahin, Oz, 2020. "Use of a structure aware discretisation algorithm for Bayesian networks applied to water quality predictions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 175(C), pages 192-201.
  • Handle: RePEc:eee:matcom:v:175:y:2020:i:c:p:192-201
    DOI: 10.1016/j.matcom.2019.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475419302204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2019.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uusitalo, Laura, 2007. "Advantages and challenges of Bayesian networks in environmental modelling," Ecological Modelling, Elsevier, vol. 203(3), pages 312-318.
    2. Marcot, Bruce G., 2017. "Common quandaries and their practical solutions in Bayesian network modeling," Ecological Modelling, Elsevier, vol. 358(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solveig Höfer & Alex Ziemba & Ghada El Serafy, 2020. "A Bayesian approach to ecosystem service trade-off analysis utilizing expert knowledge," Environment Systems and Decisions, Springer, vol. 40(1), pages 67-83, March.
    2. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    3. Nicholson, Ann E. & Flores, M. Julia, 2011. "Combining state and transition models with dynamic Bayesian networks," Ecological Modelling, Elsevier, vol. 222(3), pages 555-566.
    4. Moe, S. Jannicke & Haande, Sigrid & Couture, Raoul-Marie, 2016. "Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach," Ecological Modelling, Elsevier, vol. 337(C), pages 330-347.
    5. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    6. De Iuliis, Melissa & Kammouh, Omar & Cimellaro, Gian Paolo & Tesfamariam, Solomon, 2021. "Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    7. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
    8. Renken, Henk & Mumby, Peter J., 2009. "Modelling the dynamics of coral reef macroalgae using a Bayesian belief network approach," Ecological Modelling, Elsevier, vol. 220(9), pages 1305-1314.
    9. Verda Kocabas & Suzana Dragicevic, 2013. "Bayesian networks and agent-based modeling approach for urban land-use and population density change: a BNAS model," Journal of Geographical Systems, Springer, vol. 15(4), pages 403-426, October.
    10. Ruining Jin & Tam-Tri Le & Thu-Trang Vuong & Thi-Phuong Nguyen & Giang Hoang & Minh-Hoang Nguyen & Quan-Hoang Vuong, 2023. "A Gender Study of Food Stress and Implications for International Students Acculturation," World, MDPI, vol. 4(1), pages 1-15, January.
    11. Kragt, Marit Ellen & Bennett, Jeffrey W., 2009. "Integrating economic values and catchment modelling," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 47956, Australian Agricultural and Resource Economics Society.
    12. Jin, Ruining & Hoang, Giang & Nguyen, Thi-Phuong & Nguyen, Phuong-Tri & Le, Tam-Tri & La, Viet-Phuong & Nguyen, Minh-Hoang & Vuong, Quan-Hoang, 2022. "An analytical framework-based pedagogical method for scholarly community coaching: A proof of concept," OSF Preprints qabhj, Center for Open Science.
    13. Marcot, Bruce G., 2012. "Metrics for evaluating performance and uncertainty of Bayesian network models," Ecological Modelling, Elsevier, vol. 230(C), pages 50-62.
    14. Xiaoliang Xie & Jinxia Zuo & Bingqi Xie & Thomas A. Dooling & Selvarajah Mohanarajah, 2021. "Bayesian network reasoning and machine learning with multiple data features: air pollution risk monitoring and early warning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2555-2572, July.
    15. Montewka, Jakub & Ehlers, Sören & Goerlandt, Floris & Hinz, Tomasz & Tabri, Kristjan & Kujala, Pentti, 2014. "A framework for risk assessment for maritime transportation systems—A case study for open sea collisions involving RoPax vessels," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 142-157.
    16. Marcot, Bruce G., 2017. "Common quandaries and their practical solutions in Bayesian network modeling," Ecological Modelling, Elsevier, vol. 358(C), pages 1-9.
    17. Yi-Sheng Chao & Marco Scutari & Tai-Shen Chen & Chao-Jung Wu & Madeleine Durand & Antoine Boivin & Hsing-Chien Wu & Wei-Chih Chen, 2018. "A network perspective of engaging patients in specialist and chronic illness care: The 2014 International Health Policy Survey," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-21, August.
    18. Rasoul Amirzadeh & Asef Nazari & Dhananjay Thiruvady & Mong Shan Ee, 2023. "Modelling Determinants of Cryptocurrency Prices: A Bayesian Network Approach," Papers 2303.16148, arXiv.org.
    19. Rui Han & Shiqi Yang, 2023. "A Study on Industrial Heritage Renewal Strategy Based on Hybrid Bayesian Network," Sustainability, MDPI, vol. 15(13), pages 1-32, July.
    20. Marco Aurélio de Oliveira & Antonio Schalata Pacheco & André Hideto Futami & Luiz Veriano Oliveira Dalla Valentina & Carlos Alberto Flesch, 2023. "Self‐organizing maps and Bayesian networks in organizational modelling: A case study in innovation projects management," Systems Research and Behavioral Science, Wiley Blackwell, vol. 40(1), pages 61-87, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:175:y:2020:i:c:p:192-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.