IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v170y2020icp1-15.html
   My bibliography  Save this article

Stability and extinction of SEIR epidemic models with generalized nonlinear incidence

Author

Listed:
  • Wei, Fengying
  • Xue, Rui

Abstract

We investigate the global asymptotic stabilities of disease-free equilibrium and endemic equilibrium of the deterministic susceptible–exposed–infected–recovered epidemic model (short for SEIR model). The basic reproduction number R0, depends on constant contact rate β and natural death rate d and other parameters as well, indicates the critical value of stability, and completely determines the dynamical behavior of the deterministic model. After taking the perturbations of the environments into account, the corresponding stochastic SEIR model with generalized nonlinear incidence is discussed in existence and uniqueness, the extinction in the mean, and the existence of the unique stationary distribution as well. As a consequence, we carry out several numerical simulations to support the main theoretical results of this paper.

Suggested Citation

  • Wei, Fengying & Xue, Rui, 2020. "Stability and extinction of SEIR epidemic models with generalized nonlinear incidence," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 1-15.
  • Handle: RePEc:eee:matcom:v:170:y:2020:i:c:p:1-15
    DOI: 10.1016/j.matcom.2018.09.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475419302538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2018.09.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Guihua & Jin, Zhen, 2005. "Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1177-1184.
    2. Mao, Xuerong & Marion, Glenn & Renshaw, Eric, 2002. "Environmental Brownian noise suppresses explosions in population dynamics," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 95-110, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhai, Xuanpei & Li, Wenshuang & Wei, Fengying & Mao, Xuerong, 2023. "Dynamics of an HIV/AIDS transmission model with protection awareness and fluctuations," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Lu, Chun & Liu, Honghui & Zhang, De, 2021. "Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Zhou, Yaxin & Jiang, Daqing, 2023. "Dynamic behavior of infectious diseases influenced by TV and social media advertisement," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Jing Zhang & Tong Jin, 2024. "A Stochastic Semi-Parametric SEIR Model with Infectivity in an Incubation Period," Mathematics, MDPI, vol. 12(10), pages 1-14, May.
    5. Liu, Fangfang & Wei, Fengying, 2022. "An epidemic model with Beddington–DeAngelis functional response and environmental fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    6. Zuwen Wang & Shaojian Cai & Guangmin Chen & Kuicheng Zheng & Fengying Wei & Zhen Jin & Xuerong Mao & Jianfeng Xie, 2024. "Dynamics of a Dengue Transmission Model with Multiple Stages and Fluctuations," Mathematics, MDPI, vol. 12(16), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Fangfang & Wei, Fengying, 2022. "An epidemic model with Beddington–DeAngelis functional response and environmental fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    2. Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
    3. Huang, Zaitang & Cao, Junfei, 2018. "Ergodicity and bifurcations for stochastic logistic equation with non-Gaussian Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 1-10.
    4. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    5. Zhang, Tailei & Teng, Zhidong, 2008. "Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1456-1468.
    6. Liu, Meng & Wang, Ke, 2009. "Survival analysis of stochastic single-species population models in polluted environments," Ecological Modelling, Elsevier, vol. 220(9), pages 1347-1357.
    7. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    8. Mugnaine, Michele & Gabrick, Enrique C. & Protachevicz, Paulo R. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Batista, Antonio M. & Caldas, Iberê L. & Szezech Jr, José D. & V, 2022. "Control attenuation and temporary immunity in a cellular automata SEIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    9. Hu, Guixin & Li, Yanfang, 2015. "Asymptotic behaviors of stochastic periodic differential equation with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 403-416.
    10. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 58-69.
    11. Roy, Jyotirmoy & Alam, Shariful, 2020. "Fear factor in a prey–predator system in deterministic and stochastic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    12. Liu, Qun & Jiang, Daqing, 2020. "Threshold behavior in a stochastic SIR epidemic model with Logistic birth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    13. Xie, Falan & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2017. "Periodic solution of a stochastic HBV infection model with logistic hepatocyte growth," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 630-641.
    14. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    15. Liu, Yuting & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2016. "Stochastic extinction and persistence of a parasite–host epidemiological model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 586-602.
    16. Gao, Yin & Gao, Jinwu & Yang, Xiangfeng, 2022. "The almost sure stability for uncertain delay differential equations based on normal lipschitz conditions," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    17. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    18. Li, Guihua & Wang, Wendi & Jin, Zhen, 2006. "Global stability of an SEIR epidemic model with constant immigration," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 1012-1019.
    19. Arenas, Abraham J. & González-Parra, Gilberto & Villanueva Micó, Rafael-J., 2010. "Modeling toxoplasmosis spread in cat populations under vaccination," Theoretical Population Biology, Elsevier, vol. 77(4), pages 227-237.
    20. Zhou, Baoquan & Zhang, Xinhong & Jiang, Daqing, 2020. "Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:170:y:2020:i:c:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.