IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v155y2019icp335-346.html
   My bibliography  Save this article

Local H∞ synchronization of uncertain complex networks via non-fragile state feedback control

Author

Listed:
  • Luo, Yiping
  • Deng, Fei
  • Ling, Zhaomin
  • Cheng, Zifeng

Abstract

This paper is concerned with local H∞ synchronization control of uncertain complex networks, in which there are nonlinear coupling functions between network nodes, and the coupling terms as well as network nodes are subject to time-varying delays. In order to make a complex network achieve H∞ synchronization, a non-fragile state feedback control scheme is used. By employing the Lyapunov functional method, a sufficient condition on the existence of H∞ non-fragile controllers is derived. This condition can not only guarantee the asymptotic stability of each network node, but also ensure a prescribed robust H∞ performance level for the synchronization error system under study. The effectiveness of the proposed method is finally verified through a numerical example.

Suggested Citation

  • Luo, Yiping & Deng, Fei & Ling, Zhaomin & Cheng, Zifeng, 2019. "Local H∞ synchronization of uncertain complex networks via non-fragile state feedback control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 335-346.
  • Handle: RePEc:eee:matcom:v:155:y:2019:i:c:p:335-346
    DOI: 10.1016/j.matcom.2018.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475418301939
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2018.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Hayat, Tasawar, 2017. "Bifurcations in a delayed fractional complex-valued neural network," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 210-227.
    2. Pruessner, G. & Cheang, S. & Jensen, H.J., 2015. "Synchronization by small time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 8-13.
    3. Shi, Yanchao & Cao, Jinde & Chen, Guanrong, 2017. "Exponential stability of complex-valued memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 222-234.
    4. Sivaranjani, K. & Rakkiyappan, R. & Cao, Jinde & Alsaedi, Ahmed, 2017. "Synchronization of nonlinear singularly perturbed complex networks with uncertain inner coupling via event triggered control," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 283-299.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tai, Weipeng & Zuo, Dandan & Xuan, Zuxing & Zhou, Jianping & Wang, Zhen, 2021. "Non-fragile L2−L∞ filtering for a class of switched neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 629-645.
    2. Zhang, Wanli & Yang, Xinsong & Yang, Shiju & Alsaedi, Ahmed, 2021. "Finite-time and fixed-time bipartite synchronization of complex networks with signed graphs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 319-329.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qiaoping & Liu, Sanyang & Chen, Yonggang, 2018. "Combination event-triggered adaptive networked synchronization communication for nonlinear uncertain fractional-order chaotic systems," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 521-535.
    2. Xu, Quan & Xu, Xiaohui & Zhuang, Shengxian & Xiao, Jixue & Song, Chunhua & Che, Chang, 2018. "New complex projective synchronization strategies for drive-response networks with fractional complex-variable dynamics," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 552-566.
    3. Tu, Zhengwen & Ding, Nan & Li, Liangliang & Feng, Yuming & Zou, Limin & Zhang, Wei, 2017. "Adaptive synchronization of memristive neural networks with time-varying delays and reaction–diffusion term," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 118-128.
    4. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    5. Jiang, Xiaowei & Chen, Xiangyong & Chi, Ming & Chen, Jie, 2020. "On Hopf bifurcation and control for a delay systems," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    6. Li, Chengren & Lü, Ling & Li, Gang & Zhao, Guannan & Gao, Liyu & Ge, Lianjun & Han, Changhui, 2019. "Cluster synchronization in uncertain network with nonidentical nodes based on adaptive pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 742-749.
    7. Luo, Mengzhuo & Cheng, Jun & Liu, Xinzhi & Zhong, Shouming, 2019. "An extended synchronization analysis for memristor-based coupled neural networks via aperiodically intermittent control," Applied Mathematics and Computation, Elsevier, vol. 344, pages 163-182.
    8. Luo, Mengzhuo & Liu, Xinzhi & Zhong, Shouming & Cheng, Jun, 2018. "Synchronization of multi-stochastic-link complex networks via aperiodically intermittent control with two different switched periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 20-38.
    9. Márquez-Martínez, L.A. & Cuesta-García, J.R. & Pena Ramirez, J., 2022. "Boosting synchronization in chaotic systems: Combining past and present interactions," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    10. Wang, Xinhe & Lu, Junwei & Wang, Zhen & Li, Yuxia, 2020. "Dynamics of discrete epidemic models on heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    11. Jin-E Zhang, 2017. "Centralized and Decentralized Data-Sampling Principles for Outer-Synchronization of Fractional-Order Neural Networks," Complexity, Hindawi, vol. 2017, pages 1-11, March.
    12. Wang, Huanan & Huang, Chengdai & Liu, Heng & Cao, Jinde, 2023. "Detecting bifurcations in a fractional-order neural network with nonidentical delays via Cramer’s rule," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    13. Liang, Kun & Dai, Mingcheng & Shen, Hao & Wang, Jing & Wang, Zhen & Chen, Bo, 2018. "L2−L∞ synchronization for singularly perturbed complex networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 450-462.
    14. Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
    15. Guo, Beibei & Wu, Yinhu & Xiao, Yu & Zhang, Chiping, 2018. "Graph-theoretic approach to synchronizing stochastic coupled systems with time-varying delays on networks via periodically intermittent control," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 341-357.
    16. Wang, Lingyu & Huang, Tingwen & Xiao, Qiang, 2018. "Global exponential synchronization of nonautonomous recurrent neural networks with time delays on time scales," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 263-275.
    17. Ali Yousef & Fatma Bozkurt Yousef, 2019. "Bifurcation and Stability Analysis of a System of Fractional-Order Differential Equations for a Plant–Herbivore Model with Allee Effect," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
    18. Jinlong Shu & Lianglin Xiong & Tao Wu & Zixin Liu, 2019. "Stability Analysis of Quaternion-Valued Neutral-Type Neural Networks with Time-Varying Delay," Mathematics, MDPI, vol. 7(1), pages 1-23, January.
    19. Chang, Wenting & Zhu, Song & Li, Jinyu & Sun, Kaili, 2018. "Global Mittag–Leffler stabilization of fractional-order complex-valued memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 346-362.
    20. Yao, Xueqi & Zhong, Shouming & Hu, Taotao & Cheng, Hong & Zhang, Dian, 2019. "Uniformly stable and attractive of fractional-order memristor-based neural networks with multiple delays," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 392-403.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:155:y:2019:i:c:p:335-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.