IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v146y2018icp177-185.html
   My bibliography  Save this article

Estimation of parameters for the Marshall–Olkin generalized exponential distribution based on complete data

Author

Listed:
  • Torabi, Hamzeh
  • Bagheri, F.L.
  • Mahmoudi, E.

Abstract

This paper derives some properties of the Marshall–Olkin generalized exponential distribution and shows that this distribution is more flexible than the exponentiated exponential distribution. Then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and some new methods based on minimum spacing distance. Furthermore, asymptotic confidence intervals of the estimators are presented. Finally, we give a method to simulate the proposed distribution.

Suggested Citation

  • Torabi, Hamzeh & Bagheri, F.L. & Mahmoudi, E., 2018. "Estimation of parameters for the Marshall–Olkin generalized exponential distribution based on complete data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 177-185.
  • Handle: RePEc:eee:matcom:v:146:y:2018:i:c:p:177-185
    DOI: 10.1016/j.matcom.2017.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475417303737
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2017.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gupta, Rameshwar D. & Kundu, Debasis, 2003. "Discriminating between Weibull and generalized exponential distributions," Computational Statistics & Data Analysis, Elsevier, vol. 43(2), pages 179-196, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. M. Almetwally & H. M. Almongy & M. K. Rastogi & M. Ibrahim, 2020. "Maximum Product Spacing Estimation of Weibull Distribution Under Adaptive Type-II Progressive Censoring Schemes," Annals of Data Science, Springer, vol. 7(2), pages 257-279, June.
    2. Shovan Chowdhury, 2019. "Selection between Exponential and Lindley distributions," Working papers 316, Indian Institute of Management Kozhikode.
    3. Saieed Ateya, 2014. "Maximum likelihood estimation under a finite mixture of generalized exponential distributions based on censored data," Statistical Papers, Springer, vol. 55(2), pages 311-325, May.
    4. Debasis Kundu & Anubhav Manglick, 2004. "Discriminating between the Weibull and log‐normal distributions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(6), pages 893-905, September.
    5. Nandi, Swagata & Dewan, Isha, 2010. "An EM algorithm for estimating the parameters of bivariate Weibull distribution under random censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1559-1569, June.
    6. Ruizheng Niu & Weizhong Tian & Yunchu Zhang, 2023. "Discriminating among Generalized Exponential, Weighted Exponential and Weibull Distributions," Mathematics, MDPI, vol. 11(18), pages 1-16, September.
    7. Yu-Jau Lin & Y. L. Lio, 2012. "Bayesian inference under progressive type-I interval censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(8), pages 1811-1824, April.
    8. Heba S. Mohammed & Saieed F. Ateya & Essam K. AL-Hussaini, 2017. "Estimation based on progressive first-failure censoring from exponentiated exponential distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1479-1494, June.
    9. Sarhan, Ammar M. & Balakrishnan, N., 2007. "A new class of bivariate distributions and its mixture," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1508-1527, August.
    10. Ali Akbar Bromideh, 2012. "Discriminating Between Weibull and Log-Normal Distributions Based on Kullback-Leibler Divergence," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 16(1), pages 44-54, May.
    11. Jese Maria Sarabia & Enrique Castillo, 2005. "About a class of max-stable families with applications to income distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 505-527.
    12. Zoran Vidović, 2019. "Bayesian Prediction of Order Statistics Based on k -Record Values from a Generalized Exponential Distribution," Stats, MDPI, vol. 2(4), pages 1-10, November.
    13. Chansoo Kim & Seongho Song, 2010. "Bayesian estimation of the parameters of the generalized exponential distribution from doubly censored samples," Statistical Papers, Springer, vol. 51(3), pages 583-597, September.
    14. Abdel-Hamid, Alaa H. & AL-Hussaini, Essam K., 2009. "Estimation in step-stress accelerated life tests for the exponentiated exponential distribution with type-I censoring," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1328-1338, February.
    15. Chen, D.G. & Lio, Y.L., 2010. "Parameter estimations for generalized exponential distribution under progressive type-I interval censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1581-1591, June.
    16. Kim, Jin Seon & Yum, Bong-Jin, 2008. "Selection between Weibull and lognormal distributions: A comparative simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 477-485, December.
    17. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    18. Kundu, Debasis & Gupta, Rameshwar D., 2007. "A convenient way of generating gamma random variables using generalized exponential distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2796-2802, March.
    19. David Han & Debasis Kundu, 2013. "Inference for a step-stress model with competing risks from the GE distribution under Type-I censoring," Working Papers 0181mss, College of Business, University of Texas at San Antonio.
    20. Nadarajah, Saralees & Kotz, Samuel, 2006. "The beta exponential distribution," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 689-697.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:146:y:2018:i:c:p:177-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.