A random walk on spheres based kinetic Monte Carlo method for simulation of the fluctuation-limited bimolecular reactions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2016.03.011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kolodko, A. & Sabelfeld, K. & Wagner, W., 1999. "A stochastic method for solving Smoluchowski's coagulation equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 49(1), pages 57-79.
- Sabelfeld K.K. & Rogasinsky S.V. & Kolodko A.A. & Levykin A.I., 1996. "Stochastic algorithms for solving Smolouchovsky coagulation equation and applications to aerosol growth simulation," Monte Carlo Methods and Applications, De Gruyter, vol. 2(1), pages 41-88, December.
- Sabelfeld K. & Mozartova N., 2009. "Sparsified Randomization Algorithms for large systems of linear equations and a new version of the Random Walk on Boundary method," Monte Carlo Methods and Applications, De Gruyter, vol. 15(3), pages 257-284, January.
- Garcia, Alejandro L. & van den Broeck, Christian & Aertsens, Marc & Serneels, Roger, 1987. "A Monte Carlo simulation of coagulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 143(3), pages 535-546.
- Sabelfeld, Karl & Kolodko, Anastasia, 2003. "Stochastic Lagrangian models and algorithms for spatially inhomogeneous Smoluchowski equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 61(2), pages 115-137.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sabelfeld Karl K. & Levykin Alexander I. & Kireeva Anastasiya E., 2015. "Stochastic simulation of fluctuation-induced reaction-diffusion kinetics governed by Smoluchowski equations," Monte Carlo Methods and Applications, De Gruyter, vol. 21(1), pages 33-48, March.
- Eibeck Andreas & Wagner Wolfgang, 2001. "Stochastic algorithms for studying coagulation dynamics and gelation phenomena," Monte Carlo Methods and Applications, De Gruyter, vol. 7(1-2), pages 157-166, December.
- Wagner, Wolfgang, 2003. "Stochastic, analytic and numerical aspects of coagulation processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 62(3), pages 265-275.
- Sabelfeld Karl K., 2016. "Splitting and survival probabilities in stochastic random walk methods and applications," Monte Carlo Methods and Applications, De Gruyter, vol. 22(1), pages 55-72, March.
- Kolodko A. A. & Sabelfeld K. K., 2001. "Stochastic Lagrangian model for spatially inhomogeneous Smoluchowski equation governing coagulating and diffusing particles," Monte Carlo Methods and Applications, De Gruyter, vol. 7(3-4), pages 223-228, December.
- Sabelfeld K. & Levykin A. & Privalova T., 2007. "A Fast Stratified Sampling Simulation of Coagulation Processes," Monte Carlo Methods and Applications, De Gruyter, vol. 13(1), pages 71-88, April.
- Sabelfeld, Karl & Kolodko, Anastasia, 2003. "Stochastic Lagrangian models and algorithms for spatially inhomogeneous Smoluchowski equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 61(2), pages 115-137.
- Sabelfeld, K.K. & Mozartova, N.S., 2011. "Sparsified Randomization algorithms for low rank approximations and applications to integral equations and inhomogeneous random field simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(2), pages 295-317.
- Kolodko Anastasya A. & Wagner Wolfgang, 1997. "Convergence of a Nanbu type method for the Smoluchowski equation," Monte Carlo Methods and Applications, De Gruyter, vol. 3(4), pages 255-274, December.
- Wei, Jianming, 2014. "A parallel Monte Carlo method for population balance modeling of particulate processes using bookkeeping strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 186-197.
- Guiaş, Flavius, 2010. "Direct simulation of the infinitesimal dynamics of semi-discrete approximations for convection–diffusion–reaction problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 820-836.
- Sabelfeld Karl K., 2016. "Vector Monte Carlo stochastic matrix-based algorithms for large linear systems," Monte Carlo Methods and Applications, De Gruyter, vol. 22(3), pages 259-264, September.
- Aertsens, Marc, 1988. "Simulation of the front deformation by diffusion induced coagulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 151(2), pages 193-206.
- Sabelfeld, Karl K., 2018. "Stochastic projection methods and applications to some nonlinear inverse problems of phase retrieving," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 143(C), pages 169-175.
- Sabelfeld Karl K. & Eremeev Georgy, 2018. "A hybrid kinetic-thermodynamic Monte Carlo model for simulation of homogeneous burst nucleation," Monte Carlo Methods and Applications, De Gruyter, vol. 24(3), pages 193-202, September.
- Kolodko, A. & Sabelfeld, K. & Wagner, W., 1999. "A stochastic method for solving Smoluchowski's coagulation equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 49(1), pages 57-79.
- Sabelfeld K. & Kurbanmuradov O., 2000. "Coagulation of aerosol particles in intermittent turbulent flows," Monte Carlo Methods and Applications, De Gruyter, vol. 6(3), pages 211-254, December.
- Lécot C. & Tarhini A., 2008. "A quasi-stochastic simulation of the general dynamics equation for aerosols," Monte Carlo Methods and Applications, De Gruyter, vol. 13(5-6), pages 369-388, January.
- Sabelfeld, K.K., 1998. "Stochastic models for coagulation of aerosol particles in intermittent turbulent flows," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 47(2), pages 85-101.
- Sabelfeld Karl & Mozartova Nadezhda, 2012. "Stochastic boundary collocation and spectral methods for solving PDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 18(3), pages 217-263, September.
More about this item
Keywords
Fluctuation-limited reactions; Reaction–diffusion kinetics; Electron–hole kinetics; Photoluminescence; Nonradiative recombination;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:143:y:2018:i:c:p:46-56. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.