IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v22y2016i1p55-72n4.html
   My bibliography  Save this article

Splitting and survival probabilities in stochastic random walk methods and applications

Author

Listed:
  • Sabelfeld Karl K.

    (Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Prospect Akademika Lavrentjeva, 6, and Novosibirsk State University, Pirogova St., 2, 630090, Novosibirsk, Russia)

Abstract

We suggest a series of extremely fast stochastic algorithms based on exact representations we derive in this paper for the first passage time and exit point probability densities, splitting and survival probabilities. We apply the developed algorithms to the following three classes of problems: (1) simulation of epitaxial nanowire growth, (2) diffusion imaging of microstructures, in particular, cathodoluminescence imaging for threading dislocations, and (3) simulation of the annihilation of electrons and holes in vicinity of nonradiative centers and quantum efficiency evaluation. In the last example the Random Walk on Spheres method is used to solve nonlinear diffusion equations, and to more general systems of nonlinear Smoluchowski equations combined with the kinetic Monte Carlo method.

Suggested Citation

  • Sabelfeld Karl K., 2016. "Splitting and survival probabilities in stochastic random walk methods and applications," Monte Carlo Methods and Applications, De Gruyter, vol. 22(1), pages 55-72, March.
  • Handle: RePEc:bpj:mcmeap:v:22:y:2016:i:1:p:55-72:n:4
    DOI: 10.1515/mcma-2016-0103
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2016-0103
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2016-0103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kolodko, A. & Sabelfeld, K. & Wagner, W., 1999. "A stochastic method for solving Smoluchowski's coagulation equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 49(1), pages 57-79.
    2. Sabelfeld K. & Mozartova N., 2009. "Sparsified Randomization Algorithms for large systems of linear equations and a new version of the Random Walk on Boundary method," Monte Carlo Methods and Applications, De Gruyter, vol. 15(3), pages 257-284, January.
    3. Sabelfeld, Karl & Kolodko, Anastasia, 2003. "Stochastic Lagrangian models and algorithms for spatially inhomogeneous Smoluchowski equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 61(2), pages 115-137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabelfeld, Karl K., 2018. "A random walk on spheres based kinetic Monte Carlo method for simulation of the fluctuation-limited bimolecular reactions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 143(C), pages 46-56.
    2. Sabelfeld Karl K. & Levykin Alexander I. & Kireeva Anastasiya E., 2015. "Stochastic simulation of fluctuation-induced reaction-diffusion kinetics governed by Smoluchowski equations," Monte Carlo Methods and Applications, De Gruyter, vol. 21(1), pages 33-48, March.
    3. Kolodko A. A. & Sabelfeld K. K., 2001. "Stochastic Lagrangian model for spatially inhomogeneous Smoluchowski equation governing coagulating and diffusing particles," Monte Carlo Methods and Applications, De Gruyter, vol. 7(3-4), pages 223-228, December.
    4. Eibeck Andreas & Wagner Wolfgang, 2001. "Stochastic algorithms for studying coagulation dynamics and gelation phenomena," Monte Carlo Methods and Applications, De Gruyter, vol. 7(1-2), pages 157-166, December.
    5. Sabelfeld, K.K. & Mozartova, N.S., 2011. "Sparsified Randomization algorithms for low rank approximations and applications to integral equations and inhomogeneous random field simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(2), pages 295-317.
    6. Sabelfeld, Karl K., 2018. "Stochastic projection methods and applications to some nonlinear inverse problems of phase retrieving," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 143(C), pages 169-175.
    7. Sabelfeld K. & Levykin A. & Privalova T., 2007. "A Fast Stratified Sampling Simulation of Coagulation Processes," Monte Carlo Methods and Applications, De Gruyter, vol. 13(1), pages 71-88, April.
    8. Sabelfeld K. & Kurbanmuradov O., 2000. "Coagulation of aerosol particles in intermittent turbulent flows," Monte Carlo Methods and Applications, De Gruyter, vol. 6(3), pages 211-254, December.
    9. Wagner, Wolfgang, 2003. "Stochastic, analytic and numerical aspects of coagulation processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 62(3), pages 265-275.
    10. Guiaş, Flavius, 2010. "Direct simulation of the infinitesimal dynamics of semi-discrete approximations for convection–diffusion–reaction problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 820-836.
    11. Sabelfeld Karl & Mozartova Nadezhda, 2012. "Stochastic boundary collocation and spectral methods for solving PDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 18(3), pages 217-263, September.
    12. Grigoriu Mircea, 2014. "An efficient Monte Carlo solution for problems with random matrices," Monte Carlo Methods and Applications, De Gruyter, vol. 20(2), pages 121-136, June.
    13. Sabelfeld Karl K., 2016. "Vector Monte Carlo stochastic matrix-based algorithms for large linear systems," Monte Carlo Methods and Applications, De Gruyter, vol. 22(3), pages 259-264, September.
    14. Sabelfeld, Karl & Kolodko, Anastasia, 2003. "Stochastic Lagrangian models and algorithms for spatially inhomogeneous Smoluchowski equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 61(2), pages 115-137.
    15. Sabelfeld Karl & Loshchina Nadja, 2010. "Stochastic iterative projection methods for large linear systems," Monte Carlo Methods and Applications, De Gruyter, vol. 16(3-4), pages 343-359, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:22:y:2016:i:1:p:55-72:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.