IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v81y2010i4p820-836.html
   My bibliography  Save this article

Direct simulation of the infinitesimal dynamics of semi-discrete approximations for convection–diffusion–reaction problems

Author

Listed:
  • Guiaş, Flavius

Abstract

In this paper a scheme for approximating solutions of convection–diffusion–reaction equations by Markov jump processes is studied. The general principle of the method of lines reduces evolution partial differential equations to semi-discrete approximations consisting of systems of ordinary differential equations. Our approach is to use for this resulting system a stochastic scheme which is essentially a direct simulation of the corresponding infinitesimal dynamics. This implies automatically the time adaptivity and, in one space dimension, stable approximations of diffusion operators on non-uniform grids and the possibility of using moving cells for the transport part, all within the framework of an explicit method. We present several results in one space dimension including free boundary problems, but the general algorithm is simple, flexible and on uniform grids it can be formulated for general evolution partial differential equations in arbitrary space dimensions.

Suggested Citation

  • Guiaş, Flavius, 2010. "Direct simulation of the infinitesimal dynamics of semi-discrete approximations for convection–diffusion–reaction problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 820-836.
  • Handle: RePEc:eee:matcom:v:81:y:2010:i:4:p:820-836
    DOI: 10.1016/j.matcom.2010.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475410002946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2010.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sabelfeld, Karl & Kolodko, Anastasia, 2003. "Stochastic Lagrangian models and algorithms for spatially inhomogeneous Smoluchowski equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 61(2), pages 115-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valades-Pelayo Patricio J. & Ramirez-Cabrera Manuel A. & Balbuena-Ortega Argelia, 2023. "Linking the Monte Carlo radiative transfer algorithm to the radiative transfer equation," Monte Carlo Methods and Applications, De Gruyter, vol. 29(2), pages 173-180, June.
    2. Guiaş, Flavius & Eremeev, Pavel, 2016. "Improving the stochastic direct simulation method with applications to evolution partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 353-370.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabelfeld Karl K. & Levykin Alexander I. & Kireeva Anastasiya E., 2015. "Stochastic simulation of fluctuation-induced reaction-diffusion kinetics governed by Smoluchowski equations," Monte Carlo Methods and Applications, De Gruyter, vol. 21(1), pages 33-48, March.
    2. Sabelfeld, Karl K., 2018. "A random walk on spheres based kinetic Monte Carlo method for simulation of the fluctuation-limited bimolecular reactions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 143(C), pages 46-56.
    3. Sabelfeld K. & Levykin A. & Privalova T., 2007. "A Fast Stratified Sampling Simulation of Coagulation Processes," Monte Carlo Methods and Applications, De Gruyter, vol. 13(1), pages 71-88, April.
    4. Sabelfeld Karl K., 2016. "Splitting and survival probabilities in stochastic random walk methods and applications," Monte Carlo Methods and Applications, De Gruyter, vol. 22(1), pages 55-72, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:81:y:2010:i:4:p:820-836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.