IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v13y2008i5-6p369-388n3.html
   My bibliography  Save this article

A quasi-stochastic simulation of the general dynamics equation for aerosols

Author

Listed:
  • Lécot C.

    (Laboratoire de Mathématiques, UMR 5127 CNRS & Université de Savoie, Campus scientifique, 73376 Le Bourget-du-Lac Cedex, France. Email: Christian.Lecot@univ-savoie.fr)

  • Tarhini A.

    (Laboratoire de Mathématiques, UMR 5127 CNRS & Université de Savoie, Campus scientifique, 73376 Le Bourget-du-Lac Cedex, France. Email: Ali.Tarhini@univ-savoie.fr)

Abstract

We propose a quasi-Monte Carlo (QMC) scheme for the simulation of the general dynamics equation (GDE) for aerosols. The mass distribution is approximated by a fixed number of weighted numerical particles. Time is discretized and a splitting approach is used. Coagulation is simulated with a stochastic particle method using quasi-random points. In addition, the particles are reordered by increasing size at every time step. Integration of condensation/evaporation and deposition is performed using a deterministic particle method. The accuracy of the scheme is assessed through several numerical experiments, in cases where an exact solution is known. The error of the QMC scheme is shown to be smaller than the error produced by the corresponding Monte Carlo (MC) scheme.

Suggested Citation

  • Lécot C. & Tarhini A., 2008. "A quasi-stochastic simulation of the general dynamics equation for aerosols," Monte Carlo Methods and Applications, De Gruyter, vol. 13(5-6), pages 369-388, January.
  • Handle: RePEc:bpj:mcmeap:v:13:y:2008:i:5-6:p:369-388:n:3
    DOI: 10.1515/mcma.2007.020
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma.2007.020
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma.2007.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sabelfeld K.K. & Rogasinsky S.V. & Kolodko A.A. & Levykin A.I., 1996. "Stochastic algorithms for solving Smolouchovsky coagulation equation and applications to aerosol growth simulation," Monte Carlo Methods and Applications, De Gruyter, vol. 2(1), pages 41-88, December.
    2. Kolodko A. & Sabelfeld K., 2003. "Stochastic particle methods for Smoluchowski coagulation equation: variance reduction and error estimations," Monte Carlo Methods and Applications, De Gruyter, vol. 9(4), pages 315-339, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabelfeld Karl K. & Eremeev Georgy, 2018. "A hybrid kinetic-thermodynamic Monte Carlo model for simulation of homogeneous burst nucleation," Monte Carlo Methods and Applications, De Gruyter, vol. 24(3), pages 193-202, September.
    2. Kolodko A. A. & Sabelfeld K. K., 2001. "Stochastic Lagrangian model for spatially inhomogeneous Smoluchowski equation governing coagulating and diffusing particles," Monte Carlo Methods and Applications, De Gruyter, vol. 7(3-4), pages 223-228, December.
    3. Eibeck Andreas & Wagner Wolfgang, 2001. "Stochastic algorithms for studying coagulation dynamics and gelation phenomena," Monte Carlo Methods and Applications, De Gruyter, vol. 7(1-2), pages 157-166, December.
    4. Kolodko, A. & Sabelfeld, K. & Wagner, W., 1999. "A stochastic method for solving Smoluchowski's coagulation equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 49(1), pages 57-79.
    5. Kolodko Anastasya A. & Wagner Wolfgang, 1997. "Convergence of a Nanbu type method for the Smoluchowski equation," Monte Carlo Methods and Applications, De Gruyter, vol. 3(4), pages 255-274, December.
    6. Sabelfeld K. & Levykin A. & Privalova T., 2007. "A Fast Stratified Sampling Simulation of Coagulation Processes," Monte Carlo Methods and Applications, De Gruyter, vol. 13(1), pages 71-88, April.
    7. Sabelfeld Karl K. & Levykin Alexander I. & Kireeva Anastasiya E., 2015. "Stochastic simulation of fluctuation-induced reaction-diffusion kinetics governed by Smoluchowski equations," Monte Carlo Methods and Applications, De Gruyter, vol. 21(1), pages 33-48, March.
    8. Wagner, Wolfgang, 2003. "Stochastic, analytic and numerical aspects of coagulation processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 62(3), pages 265-275.
    9. Sabelfeld, K.K., 1998. "Stochastic models for coagulation of aerosol particles in intermittent turbulent flows," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 47(2), pages 85-101.
    10. Sabelfeld K.K. & Kolodko A.A., 1997. "Monte Carlo simulation of the coagulation processes governed by Smoluchowski equation with random coefficients," Monte Carlo Methods and Applications, De Gruyter, vol. 3(4), pages 275-312, December.
    11. Sabelfeld, Karl K., 2018. "A random walk on spheres based kinetic Monte Carlo method for simulation of the fluctuation-limited bimolecular reactions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 143(C), pages 46-56.
    12. Wells Clive G. & Kraft Markus, 2005. "Direct Simulation and Mass Flow Stochastic Algorithms to Solve a Sintering-Coagulation Equation," Monte Carlo Methods and Applications, De Gruyter, vol. 11(2), pages 175-197, June.
    13. Sabelfeld, Karl & Kolodko, Anastasia, 2003. "Stochastic Lagrangian models and algorithms for spatially inhomogeneous Smoluchowski equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 61(2), pages 115-137.
    14. Kolodko A. & Sabelfeld K., 2003. "Stochastic particle methods for Smoluchowski coagulation equation: variance reduction and error estimations," Monte Carlo Methods and Applications, De Gruyter, vol. 9(4), pages 315-339, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:13:y:2008:i:5-6:p:369-388:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.