IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v101y2014icp43-60.html
   My bibliography  Save this article

Multi-almost periodicity in semi-discretizations of a general class of neural networks

Author

Listed:
  • Huang, Zhenkun
  • Mohamad, Sannay
  • Gao, Feng

Abstract

In this paper, we present multi-almost periodicity of a general class of discrete-time neural networks derived from a well-known semi-discretization technique, that is, coexistence and exponential stability of 2N almost periodic sequence solutions of discrete-time neural networks subjected to external almost periodic stimuli. By using monotonicity and boundedness of activation functions, we construct 2N close regions to attain the existence of almost periodic sequence solutions. Meanwhile, some new and simple criteria are derived for the networks to converge exponentially toward 2N almost periodic sequence solutions. As special cases, our results can extend to discrete-time analogues of periodic or autonomous neural networks and hence complement or improve corresponding existing ones. Finally, computer numerical simulations are performed to illustrate multi-almost periodicity of semi-discretizations of neural networks.

Suggested Citation

  • Huang, Zhenkun & Mohamad, Sannay & Gao, Feng, 2014. "Multi-almost periodicity in semi-discretizations of a general class of neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 101(C), pages 43-60.
  • Handle: RePEc:eee:matcom:v:101:y:2014:i:c:p:43-60
    DOI: 10.1016/j.matcom.2013.05.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475414000470
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2013.05.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamad, S. & Gopalsamy, K., 2000. "Dynamics of a class of discrete-time neural networks and their continuous-time counterparts," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 53(1), pages 1-39.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamad, Sannay, 2008. "Computer simulations of exponentially convergent networks with large impulses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 331-344.
    2. Jiang, Haijun & Teng, Zhidong, 2006. "Boundedness and global stability for nonautonomous recurrent neural networks with distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 83-93.
    3. Chu, Tianguang & Yang, Haifeng, 2007. "A note on exponential convergence of neural networks with unbounded distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1538-1545.
    4. Kaslik, E. & Balint, St., 2007. "Bifurcation analysis for a two-dimensional delayed discrete-time Hopfield neural network," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1245-1253.
    5. Yang, Xiaofan & Liao, Xiaofeng & Megson, Graham M. & Evans, David J., 2005. "Global exponential periodicity of a class of neural networks with recent-history distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 441-447.
    6. Gu, Yajuan & Wang, Hu & Yu, Yongguang, 2020. "Synchronization for fractional-order discrete-time neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    7. Kumar, Amit & Peeta, Srinivas, 2015. "A day-to-day dynamical model for the evolution of path flows under disequilibrium of traffic networks with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 235-256.
    8. Gui, Zhanji & Ge, Weigao, 2007. "Periodic solutions of nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1760-1771.
    9. Zhang, Qiang & Xu, Xiaopeng Wei Jin, 2007. "Delay-dependent global stability results for delayed Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 662-668.
    10. Chen, Shengshuang & Zhao, Weirui & Xu, Yong, 2009. "New criteria for globally exponential stability of delayed Cohen–Grossberg neural network," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1527-1543.
    11. Huo, Hai-Feng & Li, Wan-Tong, 2009. "Dynamics of continuous-time bidirectional associative memory neural networks with impulses and their discrete counterparts," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2218-2229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:101:y:2014:i:c:p:43-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.