IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v34y2007i5p1538-1545.html
   My bibliography  Save this article

A note on exponential convergence of neural networks with unbounded distributed delays

Author

Listed:
  • Chu, Tianguang
  • Yang, Haifeng

Abstract

This note examines issues concerning global exponential convergence of neural networks with unbounded distributed delays. Sufficient conditions are derived by exploiting exponentially fading memory property of delay kernel functions. The method is based on comparison principle of delay differential equations and does not need the construction of any Lyapunov functionals. It is simple yet effective in deriving less conservative exponential convergence conditions and more detailed componentwise decay estimates. The results of this note and [Chu T. An exponential convergence estimate for analog neural networks with delay. Phys Lett A 2001;283:113–8] suggest a class of neural networks whose globally exponentially convergent dynamics is completely insensitive to a wide range of time delays from arbitrary bounded discrete type to certain unbounded distributed type. This is of practical interest in designing fast and reliable neural circuits. Finally, an open question is raised on the nature of delay kernels for attaining exponential convergence in an unbounded distributed delayed neural network.

Suggested Citation

  • Chu, Tianguang & Yang, Haifeng, 2007. "A note on exponential convergence of neural networks with unbounded distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1538-1545.
  • Handle: RePEc:eee:chsofr:v:34:y:2007:i:5:p:1538-1545
    DOI: 10.1016/j.chaos.2006.04.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906003961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.04.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fei-Yu Zhang & Wan-Tong Li, 2005. "Global stability of delayed Hopfield neural networks under dynamical thresholds," Discrete Dynamics in Nature and Society, Hindawi, vol. 2005, pages 1-17, January.
    2. Lu, Junwei & Guo, Yiqian & Xu, Shengyuan, 2006. "Global asymptotic stability analysis for cellular neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 349-353.
    3. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2006. "Stability analysis for cellular neural networks with variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 331-336.
    4. Mohamad, S. & Gopalsamy, K., 2000. "Dynamics of a class of discrete-time neural networks and their continuous-time counterparts," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 53(1), pages 1-39.
    5. Yang, Haifeng & Chu, Tianguang & Zhang, Cishen, 2006. "Exponential stability of neural networks with variable delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 133-139.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    2. Lan, Heng-you & Cui, Yi-Shun, 2009. "A neural network method for solving a system of linear variational inequalities," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1245-1252.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qiang & Xu, Xiaopeng Wei Jin, 2007. "Delay-dependent global stability results for delayed Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 662-668.
    2. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    3. Singh, Vimal, 2009. "Remarks on estimating upper limit of norm of delayed connection weight matrix in the study of global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2013-2017.
    4. Sheng, Li & Yang, Huizhong, 2009. "Robust stability of uncertain Markovian jumping Cohen–Grossberg neural networks with mixed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2120-2128.
    5. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    6. Singh, Vimal, 2007. "Simplified approach to the exponential stability of delayed neural networks with time varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 609-616.
    7. Singh, Vimal, 2007. "On global exponential stability of delayed cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 188-193.
    8. Gao, Ming & Cui, Baotong, 2009. "Global robust stability of neural networks with multiple discrete delays and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1823-1834.
    9. Singh, Vimal, 2007. "Global robust stability of delayed neural networks: Estimating upper limit of norm of delayed connection weight matrix," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 259-263.
    10. Wu, Wei & Cui, Bao Tong & Huang, Min, 2007. "Global asymptotic stability of Cohen–Grossberg neural networks with constant and variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1355-1361.
    11. Öcalan, Özkan & Duman, Oktay, 2009. "Oscillation analysis of neutral difference equations with delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 261-270.
    12. Wu, Wei & Cui, Bao Tong & Huang, Min, 2007. "Global asymptotic stability of delayed Cohen–Grossberg neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 872-877.
    13. Singh, Vimal, 2007. "LMI approach to the global robust stability of a larger class of neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1927-1934.
    14. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2008. "Delay-dependent exponential stability criteria for non-autonomous cellular neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 985-990.
    15. Li, Yongkun & Xing, Zhiwei, 2007. "Existence and global exponential stability of periodic solution of CNNs with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1686-1693.
    16. Singh, Vimal, 2007. "Some remarks on global asymptotic stability of neural networks with constant time delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1720-1724.
    17. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2009. "Global exponential stability for nonautonomous cellular neural networks with unbounded delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1144-1151.
    18. Xiong, Wenjun & Liang, Jinling, 2007. "Novel stability criteria for neutral systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1735-1741.
    19. Singh, Vimal, 2007. "Novel LMI condition for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 503-508.
    20. Peng, Dezhong & Yi, Zhang, 2008. "Global convergence of an adaptive minor component extraction algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 550-561.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:34:y:2007:i:5:p:1538-1545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.