IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v34y2007i4p1245-1253.html
   My bibliography  Save this article

Bifurcation analysis for a two-dimensional delayed discrete-time Hopfield neural network

Author

Listed:
  • Kaslik, E.
  • Balint, St.

Abstract

In this paper, a bifurcation analysis is undertaken for a discrete-time Hopfield neural network with a single delay. Conditions ensuring the asymptotic stability of the null solution are found, with respect to two characteristic parameters of the system. It is shown that for certain values of these parameters, fold or Neimark–Sacker bifurcations occur, but codimension 2 (fold-Neimark–Sacker, double Neimark–Sacker and resonance 1:1) bifurcations may also be present. The direction and the stability of the Neimark–Sacker bifurcations are investigated by applying the center manifold theorem and the normal form theory.

Suggested Citation

  • Kaslik, E. & Balint, St., 2007. "Bifurcation analysis for a two-dimensional delayed discrete-time Hopfield neural network," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1245-1253.
  • Handle: RePEc:eee:chsofr:v:34:y:2007:i:4:p:1245-1253
    DOI: 10.1016/j.chaos.2006.03.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906003638
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.03.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Chunrui & Zheng, Baodong, 2005. "Hopf bifurcation in numerical approximation of a n-dimension neural network model with multi-delays," Chaos, Solitons & Fractals, Elsevier, vol. 25(1), pages 129-146.
    2. Mohamad, S. & Gopalsamy, K., 2000. "Dynamics of a class of discrete-time neural networks and their continuous-time counterparts," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 53(1), pages 1-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaslik, E. & Balint, St., 2009. "Bifurcation analysis for a discrete-time Hopfield neural network of two neurons with two delays and self-connections," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 83-91.
    2. Yang, Degang & Hu, Chunyan & Chen, Yong & Wei, Pengcheng & Yang, Huaqian, 2009. "New delay-dependent global asymptotic stability criteria of delayed BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 854-864.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamad, Sannay, 2008. "Computer simulations of exponentially convergent networks with large impulses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 331-344.
    2. Kaslik, E. & Balint, St., 2009. "Bifurcation analysis for a discrete-time Hopfield neural network of two neurons with two delays and self-connections," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 83-91.
    3. Yang, Xiaofan & Liao, Xiaofeng & Megson, Graham M. & Evans, David J., 2005. "Global exponential periodicity of a class of neural networks with recent-history distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 441-447.
    4. Kumar, Amit & Peeta, Srinivas, 2015. "A day-to-day dynamical model for the evolution of path flows under disequilibrium of traffic networks with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 235-256.
    5. Gui, Zhanji & Ge, Weigao, 2007. "Periodic solutions of nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1760-1771.
    6. Li, Fengjun & Xu, Zongben, 2008. "The estimation of simultaneous approximation order for neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 572-580.
    7. Zhang, Qiang & Xu, Xiaopeng Wei Jin, 2007. "Delay-dependent global stability results for delayed Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 662-668.
    8. Chen, Shengshuang & Zhao, Weirui & Xu, Yong, 2009. "New criteria for globally exponential stability of delayed Cohen–Grossberg neural network," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1527-1543.
    9. Yang, Yu & Ye, Jin, 2009. "Stability and bifurcation in a simplified five-neuron BAM neural network with delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2357-2363.
    10. Wang, Hongbin & Jiang, Weihua, 2006. "Multiple stabilities analysis in a magnetic bearing system with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 789-799.
    11. Huo, Hai-Feng & Li, Wan-Tong, 2009. "Dynamics of continuous-time bidirectional associative memory neural networks with impulses and their discrete counterparts," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2218-2229.
    12. Yang, Xiaofan & Yang, Maobin & Liu, Huaiyi & Liao, Xiaofeng, 2008. "Bautin bifurcation in a class of two-neuron networks with resonant bilinear terms," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 575-589.
    13. Jiang, Haijun & Teng, Zhidong, 2006. "Boundedness and global stability for nonautonomous recurrent neural networks with distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 83-93.
    14. Chu, Tianguang & Yang, Haifeng, 2007. "A note on exponential convergence of neural networks with unbounded distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1538-1545.
    15. Zhang, Chunrui & Zheng, Baodong, 2007. "Stability and bifurcation of a two-dimension discrete neural network model with multi-delays," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1232-1242.
    16. Gu, Yajuan & Wang, Hu & Yu, Yongguang, 2020. "Synchronization for fractional-order discrete-time neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    17. Zheng, Baodong & Zhang, Yang & Zhang, Chunrui, 2008. "Stability and bifurcation of a discrete BAM neural network model with delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 612-616.
    18. Zhang, Chunrui & Zu, Yuangang & Zheng, Baodong, 2006. "Stability and bifurcation of a discrete red blood cell survival model," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 386-394.
    19. Huang, Zhenkun & Mohamad, Sannay & Gao, Feng, 2014. "Multi-almost periodicity in semi-discretizations of a general class of neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 101(C), pages 43-60.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:34:y:2007:i:4:p:1245-1253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.