IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v99y2020ics0264837719319842.html
   My bibliography  Save this article

Variation of wind erosion and its response to ecological programs in northern China in the period 1981–2015

Author

Listed:
  • Xu, Duanyang
  • Li, Dajing

Abstract

Wind erosion, an important topic of research on land-use and land-cover change, as well as global environmental change, is closely linked with social stability and regional or even global ecological security. In this study, wind erosion in the sandy regions of northern China in the period 1981–2015 was estimated using the revised wind erosion equation. Additionally, the rates of contribution of ecological programs to the variation of wind erosion in various sandy regions were also estimated. Results show the following. (1) In the period 1981–2015, the multi-year average amount of soil lost to wind erosion in northern China was 7.696 billion t. The area of the lightly wind-eroded regions accounted for 55.24 % of the total area of all the wind-eroded regions. (2) Under real climatic conditions, overall, there was a slight increase in the amount of wind erosion in the sandy regions of northern China in the 35-year period. There was a relatively significant change in wind erosion in regions with relatively low vegetation coverage. (3) Under average climatic conditions, overall, wind erosion in the sandy regions of northern China in the 35-year period decreased at an average rate of 6.11 million t·a−1. (4) On average, ecological programs contributed 34.46 % of the variation of wind erosion in northern China. Various sandy regions also exhibited notable spatial heterogeneity.

Suggested Citation

  • Xu, Duanyang & Li, Dajing, 2020. "Variation of wind erosion and its response to ecological programs in northern China in the period 1981–2015," Land Use Policy, Elsevier, vol. 99(C).
  • Handle: RePEc:eee:lauspo:v:99:y:2020:i:c:s0264837719319842
    DOI: 10.1016/j.landusepol.2020.104871
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837719319842
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2020.104871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(2), pages 427-429, April.
    2. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(1), pages 223-229, February.
    3. Li, Zhouyuan & Wu, Wenzhao & Liu, Xuehua & Fath, Brian D. & Sun, Hailian & Liu, Xinchao & Xiao, Xinru & Cao, Jun, 2017. "Land use/cover change and regional climate change in an arid grassland ecosystem of Inner Mongolia, China," Ecological Modelling, Elsevier, vol. 353(C), pages 86-94.
    4. Jiang, Chong & Nath, Reshmita & Labzovskii, Lev & Wang, Dewang, 2018. "Integrating ecosystem services into effectiveness assessment of ecological restoration program in northern China's arid areas: Insights from the Beijing-Tianjin Sandstorm Source Region," Land Use Policy, Elsevier, vol. 75(C), pages 201-214.
    5. Cao, Shixiong & Xia, Chengqi & Yue, Hui & Ma, Hua & Lin, Gengen, 2018. "Targeted control measures for ecological restoration in Western Fujian, China," Land Use Policy, Elsevier, vol. 76(C), pages 186-192.
    6. Zhang, Daojun & Jia, Qiqi & Xu, Xin & Yao, Shunbo & Chen, Haibin & Hou, Xianhui, 2018. "Contribution of ecological policies to vegetation restoration: A case study from Wuqi County in Shaanxi Province, China," Land Use Policy, Elsevier, vol. 73(C), pages 400-411.
    7. Jiang, Chong & Zhang, Haiyan & Tang, Zhipeng & Labzovskii, Lev, 2017. "Evaluating the coupling effects of climate variability and vegetation restoration on ecosystems of the Loess Plateau, China," Land Use Policy, Elsevier, vol. 69(C), pages 134-148.
    8. Xu, Xin & Zhang, Daojun & Zhang, Yu & Yao, Shunbo & Zhang, Jinting, 2020. "Evaluating the vegetation restoration potential achievement of ecological projects: A case study of Yan’an, China," Land Use Policy, Elsevier, vol. 90(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Huan & Zhang, Chao & Yao, Xiaochuang & Yun, Wenju & Ma, Jiani & Gao, Lulu & Li, Pengshan, 2022. "Scenario simulation of the tradeoff between ecological land and farmland in black soil region of Northeast China," Land Use Policy, Elsevier, vol. 114(C).
    2. Yingqiang Song & Zeao Zhang & Yan Li & Runyan Zou & Lu Wang & Hao Yang & Yueming Hu, 2023. "The Role of High Nature Value Farmland for Landscape and Soil Pollution Assessment in a Coastal Delta in China Based on High-Resolution Indicators," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    3. Jixian Mo & Jie Li & Ziying Wang & Ziwei Song & Jingyi Feng & Yanjing Che & Jiandong Rong & Siyu Gu, 2023. "Spatiotemporal Evolution of Wind Erosion and Ecological Service Assessments in Northern Songnen Plain, China," Sustainability, MDPI, vol. 15(7), pages 1-20, March.
    4. Jing Jiang & Qian Wang & Jinmei Zhao & Jun Zhang & Bo Dong & Xin Huang, 2023. "Construction and Application of Ecological Remediation Technology for Sandy Soils in Northwest China," Sustainability, MDPI, vol. 15(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Kurdyś-Kujawska & Agnieszka Sompolska-Rzechuła & Joanna Pawłowska-Tyszko & Michał Soliwoda, 2021. "Crop Insurance, Land Productivity and the Environment: A Way forward to a Better Understanding," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
    2. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    3. Nick Middleton & Utchang Kang, 2017. "Sand and Dust Storms: Impact Mitigation," Sustainability, MDPI, vol. 9(6), pages 1-22, June.
    4. Tarantino, Emanuele & Pavanini, Nicola & Mayordomo, Sergio, 2020. "The Impact of Alternative Forms of Bank Consolidation on Credit Supply and Financial Stability," CEPR Discussion Papers 15069, C.E.P.R. Discussion Papers.
    5. Misbah Haque & Imran Ali, 2016. "Uncertain Environment and Organizational Performance: The Mediating Role of Organizational Innovation," Asian Social Science, Canadian Center of Science and Education, vol. 12(9), pages 124-124, September.
    6. Jérôme Creel & Éloi Laurent & Jacques Le Cacheux, 2007. "Politiques et performances macroéconomiques de la zone euro. Institutions, incitations, stratégies," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(3), pages 249-281.
    7. , & ,, 2015. "Strategy-proofness and efficiency with non-quasi-linear preferences: a characterization of minimum price Walrasian rule," Theoretical Economics, Econometric Society, vol. 10(2), May.
    8. Jesus M. Carro & Alejandra Traferri, 2014. "State Dependence And Heterogeneity In Health Using A Bias‐Corrected Fixed‐Effects Estimator," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 181-207, March.
    9. Nobuyoshi Yamori & Ayami Kobayashi, 2007. "Wealth Effect Of Public Fund Injections To Ailing Banks: Do Deferred Tax Assets And Auditing Firms Matter?," The Japanese Economic Review, Japanese Economic Association, vol. 58(4), pages 466-483, December.
    10. Vladimir Krivtsov & Brian J. D’Arcy & Alejandro Escribano Sevilla & Scott Arthur & Chris Semple, 2021. "Mitigating Polluted Runoff from Industrial Estates by SUDS Retrofits: Case Studies of Problems and Solutions Co-Designed with a Participatory Approach," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    11. Werner, Katharina & Graf Lambsdorff, Johann, 2016. "Emotional numbing and lessons learned after a violent conflict - Experimental evidence from Ambon, Indonesia," Passauer Diskussionspapiere, Volkswirtschaftliche Reihe V-74-16, University of Passau, Faculty of Business and Economics.
    12. Wong, Patricia J.Y., 2015. "Eigenvalues of a general class of boundary value problem with derivative-dependent nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 908-930.
    13. Alexandre Belloni & Mitchell J. Lovett & William Boulding & Richard Staelin, 2012. "Optimal Admission and Scholarship Decisions: Choosing Customized Marketing Offers to Attract a Desirable Mix of Customers," Marketing Science, INFORMS, vol. 31(4), pages 621-636, July.
    14. Janine A. Wright & Richard J. Barker & Matthew R. Schofield & Alain C. Frantz & Andrea E. Byrom & Dianne M. Gleeson, 2009. "Incorporating Genotype Uncertainty into Mark–Recapture-Type Models For Estimating Abundance Using DNA Samples," Biometrics, The International Biometric Society, vol. 65(3), pages 833-840, September.
    15. Ghosal, Sayantan & Thampanishvong, Kannika, 2013. "Does strengthening Collective Action Clauses (CACs) help?," Journal of International Economics, Elsevier, vol. 89(1), pages 68-78.
    16. Radoslav Škapa, 2014. "Formalized Planning and Its Connection With the Development of Reverse Logistics: the Case of Services," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 62(4), pages 749-755.
    17. Rozakis, Stelios, 2011. "Impacts of flatter rates and environmental top-ups in Greece: A novel mathematical modeling approach," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 12(2).
    18. Ying-Jie Li & Dong-Hui Li, 2009. "Truncated regularized Newton method for convex minimizations," Computational Optimization and Applications, Springer, vol. 43(1), pages 119-131, May.
    19. Milan Daus & Katharina Koberger & Kaan Koca & Felix Beckers & Jorge Encinas Fernández & Barbara Weisbrod & Daniel Dietrich & Sabine Ulrike Gerbersdorf & Rüdiger Glaser & Stefan Haun & Hilmar Hofmann &, 2021. "Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    20. Jörg Fliege & Huifu Xu, 2011. "Stochastic Multiobjective Optimization: Sample Average Approximation and Applications," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 135-162, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:99:y:2020:i:c:s0264837719319842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.