IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v353y2017icp86-94.html
   My bibliography  Save this article

Land use/cover change and regional climate change in an arid grassland ecosystem of Inner Mongolia, China

Author

Listed:
  • Li, Zhouyuan
  • Wu, Wenzhao
  • Liu, Xuehua
  • Fath, Brian D.
  • Sun, Hailian
  • Liu, Xinchao
  • Xiao, Xinru
  • Cao, Jun

Abstract

Conserving and protecting the arid grassland ecosystem in Inner Mongolia under climate change requires large-scale observation and analysis. The interaction between land use/cover change (LUCC) and the regional climate change in this study area is addressed using macroscopic monitoring with remote sensing observation and analysis. The area’s LUCC was examined to demonstrate the structural dynamics of the land surface in the past from 1988 to 2011. The results of LUCC showed that agricultural land, high coverage grassland, and low coverage grassland were the dominant land cover types taking approximately 65.3% in total. Developed land constantly increased from 1.4% to 12.7% during the study period due to rapid urbanization in the area. According to the land surface energy balance equations, the four key variables of the regional climate system, (1) normalized difference vegetation index (NDVI), (2) albedo (α), (3) surface temperature (Ts), and (4) evapotranspiration (ET), were calculated for their spatial-temporal pattern dynamic and also to perform a correlation analysis to explore the structure-function relationship in the land-atmosphere interaction. The results illustrated that vegetation degradation caused an increase in albedo by approximately 5% on average by 2007 as attributed to the cumulative effects of the drought since 2003. ET also declined to around 0.8cm/day in 2007. The correlation analysis results suggested the human land use such as development and agricultural activities made the surface boundary layer less responsive in the land-atmosphere interaction.

Suggested Citation

  • Li, Zhouyuan & Wu, Wenzhao & Liu, Xuehua & Fath, Brian D. & Sun, Hailian & Liu, Xinchao & Xiao, Xinru & Cao, Jun, 2017. "Land use/cover change and regional climate change in an arid grassland ecosystem of Inner Mongolia, China," Ecological Modelling, Elsevier, vol. 353(C), pages 86-94.
  • Handle: RePEc:eee:ecomod:v:353:y:2017:i:c:p:86-94
    DOI: 10.1016/j.ecolmodel.2016.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016302630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shannon M. Sterling & Agnès Ducharne & Jan Polcher, 2013. "The impact of global land-cover change on the terrestrial water cycle," Nature Climate Change, Nature, vol. 3(4), pages 385-390, April.
    2. Li, Zhouyuan & Liu, Xuehua & Ma, Tianxiao & Kejia, De & Zhou, Qingping & Yao, Bingquan & Niu, Tianlin, 2013. "Retrieval of the surface evapotranspiration patterns in the alpine grassland–wetland ecosystem applying SEBAL model in the source region of the Yellow River, China," Ecological Modelling, Elsevier, vol. 270(C), pages 64-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenfeng Chi & Jing Jia & Tao Pan & Liang Jin & Xiulian Bai, 2020. "Multi-Scale Analysis of Green Space for Human Settlement Sustainability in Urban Areas of the Inner Mongolia Plateau, China," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    2. Xu, Duanyang & Li, Dajing, 2020. "Variation of wind erosion and its response to ecological programs in northern China in the period 1981–2015," Land Use Policy, Elsevier, vol. 99(C).
    3. Byrne, Anne T. & Hadrich, Joleen C. & Robinson, Brian E. & Han, Guodong, 2020. "A factor-income approach to estimating grassland protection subsidy payments to livestock herders in Inner Mongolia, China," Land Use Policy, Elsevier, vol. 91(C).
    4. Zhang, Ruxin & Tan, Shuhao & Hannaway, David & Dai, Weizhu, 2020. "Multi-household grassland management pattern promotes ecological efficiency of livestock production," Ecological Economics, Elsevier, vol. 171(C).
    5. Wu, Bingfang & Fu, Zhijun & Fu, Bojie & Yan, Changzhen & Zeng, Hongwei & Zhao, Wenwu, 2024. "Dynamics of land cover changes and driving forces in China’s drylands since the 1970 s," Land Use Policy, Elsevier, vol. 140(C).
    6. Xiaolong Jin & Penghui Jiang & Haoyang Du & Dengshuai Chen & Manchun Li, 2021. "Response of local temperature variation to land cover and land use intensity changes in China over the last 30 years," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
    7. Rafiei-Sardooi, Elham & Azareh, Ali & Joorabian Shooshtari, Sharif & Parteli, Eric J.R., 2022. "Long-term assessment of land-use and climate change on water scarcity in an arid basin in Iran," Ecological Modelling, Elsevier, vol. 467(C).
    8. Yunfeng Hu & Batu Nacun, 2018. "An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia, China, 1990–2015," Sustainability, MDPI, vol. 10(11), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenhua Wu & Qingqing Lu & Shaogang Lei & Qingwu Yan, 2021. "Study on Landscape Ecological Classification and Landscape Types Evolution: A Case Study of a Mining City in Semi-Arid Steppe," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
    2. Changchang Liu & Chuxiong Deng & Zhongwu Li & Yaojun Liu & Shuyuan Wang, 2022. "Optimization of Spatial Pattern of Land Use: Progress, Frontiers, and Prospects," IJERPH, MDPI, vol. 19(10), pages 1-22, May.
    3. Dimas de Barros Santiago & Humberto Alves Barbosa & Washington Luiz Félix Correia Filho & José Francisco de Oliveira-Júnior & Franklin Paredes-Trejo & Catarina de Oliveira Buriti, 2022. "Variability of Water Use Efficiency Associated with Climate Change in the Extreme West of Bahia," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    4. Ilia Alomía Herrera & Rose Paque & Michiel Maertens & Veerle Vanacker, 2022. "History of Land Cover Change on Santa Cruz Island, Galapagos," Land, MDPI, vol. 11(7), pages 1-24, July.
    5. Qinghe Zhao & Shengyan Ding & Xiaoyu Ji & Zhendong Hong & Mengwen Lu & Peng Wang, 2021. "Relative Contribution of the Xiaolangdi Dam to Runoff Changes in the Lower Yellow River," Land, MDPI, vol. 10(5), pages 1-21, May.
    6. Matthew D. Senyshen & Dongmei Chen, 2023. "The Impact of Land Cover Change on Surface Water Temperature of Small Lakes in Eastern Ontario from 1985 to 2020," Land, MDPI, vol. 12(3), pages 1-18, February.
    7. Marcello Schiavina & Michele Melchiorri & Christina Corbane & Aneta J. Florczyk & Sergio Freire & Martino Pesaresi & Thomas Kemper, 2019. "Multi-Scale Estimation of Land Use Efficiency (SDG 11.3.1) across 25 Years Using Global Open and Free Data," Sustainability, MDPI, vol. 11(20), pages 1-25, October.
    8. Miyesier Jumai & Alimujiang Kasimu & Hongwu Liang & Lina Tang & Yimuranzi Aizizi & Xueling Zhang, 2023. "A Study on the Spatial and Temporal Variation of Summer Surface Temperature in the Bosten Lake Basin and Its Influencing Factors," Land, MDPI, vol. 12(6), pages 1-18, June.
    9. Anabel Sanchez-Plaza & Annelies Broekman & Pilar Paneque, 2019. "Analytical Framework to Assess the Incorporation of Climate Change Adaptation in Water Management: Application to the Tordera River Basin Adaptation Plan," Sustainability, MDPI, vol. 11(3), pages 1-13, February.
    10. Can Yang & Tianxing Wei & Yiran Li, 2022. "Simulation and Spatio-Temporal Variation Characteristics of LULC in the Context of Urbanization Construction and Ecological Restoration in the Yellow River Basin," Sustainability, MDPI, vol. 14(2), pages 1-19, January.
    11. W. Saart, Patrick & Kim, Namhyun & Bateman, Ian, 2021. "Understanding spatial heterogeneity in GB agricultural land-use for improved policy targeting," Cardiff Economics Working Papers E2021/8, Cardiff University, Cardiff Business School, Economics Section.
    12. Xiaoyu Niu & Yunfeng Hu & Zhongying Lei & Huimin Yan & Junzhi Ye & Hao Wang, 2022. "Temporal and Spatial Evolution Characteristics and Its Driving Mechanism of Land Use/Cover in Vietnam from 2000 to 2020," Land, MDPI, vol. 11(6), pages 1-19, June.
    13. Mudassar Iqbal & Jun Wen & Muhammad Masood & Muhammad Umer Masood & Muhammad Adnan, 2022. "Impacts of Climate and Land-Use Changes on Hydrological Processes of the Source Region of Yellow River, China," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    14. Cong Zhang & Xiaojun Yao & Guoyu Wang & Huian Jin & Te Sha & Xinde Chu & Juan Zhang & Juan Cao, 2022. "Temporal and Spatial Variation of Land Use and Vegetation in the Three–North Shelter Forest Program Area from 2000 to 2020," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    15. Dilayda Soylu Pekpostalci & Rifat Tur & Ali Danandeh Mehr & Mohammad Amin Vazifekhah Ghaffari & Dominika Dąbrowska & Vahid Nourani, 2023. "Drought Monitoring and Forecasting across Turkey: A Contemporary Review," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    16. Wang, Liye & Zhang, Siyu & Xiong, Qiangqiang & Liu, Yu & Liu, Yanfang & Liu, Yaolin, 2022. "Spatiotemporal dynamics of cropland expansion and its driving factors in the Yangtze River Economic Belt: A nuanced analysis at the county scale," Land Use Policy, Elsevier, vol. 119(C).
    17. Philippe Roudier & Jafet C. M. Andersson & Chantal Donnelly & Luc Feyen & Wouter Greuell & Fulco Ludwig, 2016. "Projections of future floods and hydrological droughts in Europe under a +2°C global warming," Climatic Change, Springer, vol. 135(2), pages 341-355, March.
    18. Rafiei-Sardooi, Elham & Azareh, Ali & Joorabian Shooshtari, Sharif & Parteli, Eric J.R., 2022. "Long-term assessment of land-use and climate change on water scarcity in an arid basin in Iran," Ecological Modelling, Elsevier, vol. 467(C).
    19. Cheng He & Kangning Xiong & Yongkuan Chi & Shuzhen Song & Jinzhong Fang & Shuyu He, 2022. "Effects of Landscape Type Change on Spatial and Temporal Evolution of Ecological Assets in a Karst Plateau-Mountain Area," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
    20. Yiming Wang & Yunfeng Hu & Xiaoyu Niu & Huimin Yan & Lin Zhen, 2022. "Land Use/Cover Change and Its Driving Mechanism in Thailand from 2000 to 2020," Land, MDPI, vol. 11(12), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:353:y:2017:i:c:p:86-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.