IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i7p2079-d220772.html
   My bibliography  Save this article

Temporal Changes in Multiple Ecosystem Services and Their Bundles Responding to Urbanization and Ecological Restoration in the Beijing–Tianjin–Hebei Metropolitan Area

Author

Listed:
  • Yanying Yang

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    University of Chinese Academy of Sciences, Beijing 100085, China)

  • Hua Zheng

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

  • Weihua Xu

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

  • Lu Zhang

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

  • Zhiyun Ouyang

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

Abstract

By 2050, 70% of the human population is likely to be living in cities, making urbanization an increasing global trend. Detecting changes in ecosystem services (ES) and their bundles in response to urbanization is critical for evaluating land-use policies. We examined changes in the provision of grains, vegetables, fruits, carbon sequestration, soil retention, sandstorm prevention, and water retention from 2000 to 2010 in the Beijing–Tianjin–Hebei metropolitan area, China; then, using a k-means cluster analysis, we classified 202 counties of this area into groups (bundles) based on their similar sets of ES. We found that (1) urban area, forestland, and grassland increased by 22%, 3.6%, and 1.7%, respectively, while cropland decreased by 4.6%; (2) the provision of grains, vegetables, and fruits increased by 24–90%, despite an overall loss in cropland; carbon storage and sand retention increased by 40% and 7%, respectively, while soil and water retention increased slightly by approx. 1% each; (3) 72 counties changed their ES bundles; and the “agriculture bundle” dominated the landscape in 2000 while it decreased by 50% in 2010 and was mainly transformed to “sub-developed urban bundle”, indicating loss of cropland during that decade. The transformation of ES bundles can be used to understand the effects of urbanization. The study indicated that improved technologies and ecological restoration in rural areas can help sustain multiple ES in our rapidly urbanizing world.

Suggested Citation

  • Yanying Yang & Hua Zheng & Weihua Xu & Lu Zhang & Zhiyun Ouyang, 2019. "Temporal Changes in Multiple Ecosystem Services and Their Bundles Responding to Urbanization and Ecological Restoration in the Beijing–Tianjin–Hebei Metropolitan Area," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2079-:d:220772
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/7/2079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/7/2079/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Mingyue & Peng, Jian & Liu, Yuanxin & Li, Tianyi & Wang, Yanglin, 2018. "Mapping Watershed-Level Ecosystem Service Bundles in the Pearl River Delta, China," Ecological Economics, Elsevier, vol. 152(C), pages 106-117.
    2. Marika Ferrari & Davide Geneletti & Luis Cayuela & Francesco Orsi & Jose María Rey Benayas, 2016. "Analysis of Bundles and Drivers of Change of Multiple Ecosystem Services in an Alpine Region," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26, December.
    3. Lyu, Rongfang & Zhang, Jianming & Xu, Mengqun & Li, Jijun, 2018. "Impacts of urbanization on ecosystem services and their temporal relations: A case study in Northern Ningxia, China," Land Use Policy, Elsevier, vol. 77(C), pages 163-173.
    4. Graeme S. Cumming & Andreas Buerkert & Ellen M. Hoffmann & Eva Schlecht & Stephan von Cramon-Taubadel & Teja Tscharntke, 2014. "Implications of agricultural transitions and urbanization for ecosystem services," Nature, Nature, vol. 515(7525), pages 50-57, November.
    5. Lingqiao Kong & Hua Zheng & Yi Xiao & Zhiyun Ouyang & Cong Li & Jingjing Zhang & Binbin Huang, 2018. "Mapping Ecosystem Service Bundles to Detect Distinct Types of Multifunctionality within the Diverse Landscape of the Yangtze River Basin, China," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang Tang & Yangbing Li & Xiuming Liu & Juan Huang & Yiyi Zhang & Qian Xu, 2023. "Understanding the Relationships between Landscape Eco-Security and Multifunctionality in Cropland: Implications for Supporting Cropland Management Decisions," IJERPH, MDPI, vol. 20(3), pages 1-26, January.
    2. Wan-Li Zhang & Chun-Ping Chang & Yang Xuan, 2022. "The impacts of climate change on bank performance: What’s the mediating role of natural disasters?," Economic Change and Restructuring, Springer, vol. 55(3), pages 1913-1952, August.
    3. Hui Wen & Jiquan Chen & Zhifang Wang, 2020. "Disproportioned Performances of Protected Areas in the Beijing-Tianjin-Hebei Region," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
    4. Paulin, M.J. & Remme, R.P. & de Nijs, T. & Rutgers, M. & Koopman, K.R. & de Knegt, B. & van der Hoek, D.C.J. & Breure, A.M., 2020. "Application of the Natural Capital Model to assess changes in ecosystem services from changes in green infrastructure in Amsterdam," Ecosystem Services, Elsevier, vol. 43(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Ye & Tao, Yu & Yang, Guishan & Ou, Weixin & Pueppke, Steven & Sun, Xiao & Chen, Gongtai & Tao, Qin, 2019. "Impact of land use change on multiple ecosystem services in the rapidly urbanizing Kunshan City of China: Past trajectories and future projections," Land Use Policy, Elsevier, vol. 85(C), pages 419-427.
    2. Yang Bai & Thomas O. Ochuodho & Jian Yang & Domena A. Agyeman, 2021. "Bundles and Hotspots of Multiple Ecosystem Services for Optimized Land Management in Kentucky, United States," Land, MDPI, vol. 10(1), pages 1-14, January.
    3. Aryal, Kishor & Maraseni, Tek & Apan, Armando, 2023. "Spatial dynamics of biophysical trade-offs and synergies among ecosystem services in the Himalayas," Ecosystem Services, Elsevier, vol. 59(C).
    4. Yue Wang & Qi Fu & Tinghui Wang & Mengfan Gao & Jinhua Chen, 2022. "Multiscale Characteristics and Drivers of the Bundles of Ecosystem Service Budgets in the Su-Xi-Chang Region, China," IJERPH, MDPI, vol. 19(19), pages 1-26, October.
    5. Hejie Wei & Weiguo Fan & Nachuan Lu & Zihan Xu & Huiming Liu & Weiqiang Chen & Sergio Ulgiati & Xuechao Wang & Xiaobin Dong, 2019. "Integrating Biophysical and Sociocultural Methods for Identifying the Relationships between Ecosystem Services and Land Use Change: Insights from an Oasis Area," Sustainability, MDPI, vol. 11(9), pages 1-27, May.
    6. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    7. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    8. Xiaolu Yan & Xinyuan Li & Chenghao Liu & Jiawei Li & Jingqiu Zhong, 2022. "Scales and Historical Evolution: Methods to Reveal the Relationships between Ecosystem Service Bundles and Socio-Ecological Drivers—A Case Study of Dalian City, China," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    9. Duy X. Tran & Diane Pearson & Alan Palmer & David Gray, 2020. "Developing a Landscape Design Approach for the Sustainable Land Management of Hill Country Farms in New Zealand," Land, MDPI, vol. 9(6), pages 1-29, June.
    10. Zhao, Ziyang & Wang, Hongrui & Wang, Cheng & Li, Wangcheng & Chen, Hao & Deng, Caiyun, 2020. "Changes in reference evapotranspiration over Northwest China from 1957 to 2018: Variation characteristics, cause analysis and relationships with atmospheric circulation," Agricultural Water Management, Elsevier, vol. 231(C).
    11. Dai, Xuhuan & Li, Bo & Zheng, Hua & Yang, Yanzheng & Yang, Zihan & Peng, Chenchen, 2023. "Can sedentarization decrease the dependence of pastoral livelihoods on ecosystem services?," Ecological Economics, Elsevier, vol. 203(C).
    12. Verena Preusse & Nils Nölke & Meike Wollni, 2024. "Urbanization and adoption of sustainable agricultural practices in the rural‐urban interface of Bangalore, India," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 72(2), pages 167-198, June.
    13. Xiaomeng Guo & Li Wang & Qiang Fu & Fang Ma, 2024. "Ecological Function Zoning Framework for Small Watershed Ecosystem Services Based on Multivariate Analysis from a Scale Perspective," Land, MDPI, vol. 13(7), pages 1-18, July.
    14. Yaofeng Yang & Yajuan Chen & Zhenrong Yu & Pengyao Li & Xuedong Li, 2020. "How Does Improve Farmers’ Attitudes toward Ecosystem Services to Support Sustainable Development of Agriculture? Based on Environmental Kuznets Curve Theory," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    15. Xing Liu & Zhaoyang Cai & Yan Xu & Huihui Zheng & Kaige Wang & Fengrong Zhang, 2022. "Suitability Evaluation of Cultivated Land Reserved Resources in Arid Areas Based on Regional Water Balance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1463-1479, March.
    16. Qindong Fan & Xiaoyu Yang & Chenming Zhang, 2022. "A Review of Ecosystem Services Research Focusing on China against the Background of Urbanization," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    17. Ellen M Hoffmann & Verena Konerding & Sunil Nautiyal & Andreas Buerkert, 2019. "Is the push-pull paradigm useful to explain rural-urban migration? A case study in Uttarakhand, India," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-22, April.
    18. Targetti, Stefano & Schaller, Lena L. & Kantelhardt, Jochen, 2021. "A fuzzy cognitive mapping approach for the assessment of public-goods governance in agricultural landscapes," Land Use Policy, Elsevier, vol. 107(C).
    19. Wu, Tong & Rocha, Juan C. & Berry, Kevin & Chaigneau, Tomas & Hamann, Maike & Lindkvist, Emilie & Qiu, Jiangxiao & Schill, Caroline & Shepon, Alon & Crépin, Anne-Sophie & Folke, Carl, 2024. "Triple Bottom Line or Trilemma? Global Tradeoffs Between Prosperity, Inequality, and the Environment," World Development, Elsevier, vol. 178(C).
    20. Lorilla, Roxanne Suzette & Poirazidis, Konstantinos & Detsis, Vassilis & Kalogirou, Stamatis & Chalkias, Christos, 2020. "Socio-ecological determinants of multiple ecosystem services on the Mediterranean landscapes of the Ionian Islands (Greece)," Ecological Modelling, Elsevier, vol. 422(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2079-:d:220772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.