IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v141y2024ics026483772400108x.html
   My bibliography  Save this article

Impact of fertilizer and pesticide reductions on land use in China based on crop-land integrated model

Author

Listed:
  • Hu, Yumeng
  • Liu, Yu

Abstract

While chemical fertilizers and pesticides have significantly enhanced crop productivity per unit of land in China, the excessive utilization of these chemicals has led to a range of environmental issues that are not conducive to the sustainable development of China’s agriculture. Controlling the use of fertilizers and pesticides in crop cultivation is therefore necessary and has been adopted as an action plan since 2015 in China. However, the effects of fertilizer and pesticide reductions have not been systematically investigated. This paper explores how yields and land use for rice, wheat, corn, and soybean cultivation shift when reducing their fertilizer and pesticide inputs using China’s provincial crop-land integrated partial equilibrium model (the CPMCL model). Simulation results for different scenarios show that, among the studied crops, rice and wheat exhibit greater adaptability than corn and soybeans. Reducing the use of fertilizers and pesticides within the interval from 0% to 3.5% may increase the total demand of land resources for crop production from 0.220% to 4.21%. Limited land resources will be allocated to more profitable crops to maximize output, which means the land use for wheat production may increase over 20% while for rice, corn and soybean may decrease around 4% under the shock of fertilizer and pesticide reductions. Merely reducing fertilizer and pesticide inputs in crop cultivation may exacerbate the conflict between crop production and land resource conservation in China, which means the technology and efficiency of fertilizer and pesticide use needs to be improved. The findings of this paper can help formulate more province-specific and crop-targeted plans to properly reduce fertilizer and pesticide use, thus promoting sustainable land use while ensuring food security and protecting the environment.

Suggested Citation

  • Hu, Yumeng & Liu, Yu, 2024. "Impact of fertilizer and pesticide reductions on land use in China based on crop-land integrated model," Land Use Policy, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:lauspo:v:141:y:2024:i:c:s026483772400108x
    DOI: 10.1016/j.landusepol.2024.107155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S026483772400108X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2024.107155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fei, Rilong & Wang, Haolin & Wen, Zihao & Yuan, Zhen & Yuan, Kaihua & Chunga, Joseph, 2021. "Tracking factor substitution and the rebound effect of China’s agricultural energy consumption: A new research perspective from asymmetric response," Energy, Elsevier, vol. 216(C).
    2. Lin Lin & Ziran Ye & Muye Gan & Amir Reza Shahtahmassebi & Melanie Weston & Jinsong Deng & Shenggao Lu & Ke Wang, 2017. "Quality Perspective on the Dynamic Balance of Cultivated Land in Wenzhou, China," Sustainability, MDPI, vol. 9(1), pages 1-17, January.
    3. van Wesenbeeck, C.F.A. & Keyzer, M.A. & van Veen, W.C.M. & Qiu, H., 2021. "Can China's overuse of fertilizer be reduced without threatening food security and farm incomes?," Agricultural Systems, Elsevier, vol. 190(C).
    4. Hu, Yingjie & Lu, Bin & Wu, Jiayu, 2019. "Value capture in industrial land renewal under the public leasehold system: A policy comparison in China," Land Use Policy, Elsevier, vol. 84(C), pages 59-69.
    5. Johne, Clara & Schröder, Enno & Ward, Hauke, 2023. "The distributional effects of a nitrogen tax: Evidence from Germany," Ecological Economics, Elsevier, vol. 208(C).
    6. Subhash C. Ray, 1982. "A Translog Cost Function Analysis of U.S. Agriculture, 1939–77," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 64(3), pages 490-498.
    7. Muhammad, Andrew & Meade, Birgit Gisela Saager, 2011. "International Evidence on Food Consumption Patterns: An Update Using 2005 International Comparison Program Data," Technical Bulletins 120252, United States Department of Agriculture, Economic Research Service.
    8. Féménia, Fabienne & Letort, Elodie, 2016. "How to achieve significant reduction in pesticide use? An empirical evaluation of the impacts of pesticide taxation associated to a change in cropping practice," Working Papers 233482, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    9. Heyuan You & Shenyan Wu & Xin Wu & Xuxu Guo & Yan Song, 2021. "The underlying influencing factors of farmland transfer in urbanizing China: implications for sustainable land use goals," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8722-8745, June.
    10. Hanaki, Nobuyuki & Hayashi, Takashi & Lombardi, Michele & Ogawa, Kazuhito, 2021. "Partial equilibrium mechanism and inter-sectoral coordination: An experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 190(C), pages 366-389.
    11. Holtslag-Broekhof, Sanne, 2018. "Urban land readjustment: Necessary for effective urban renewal? Analysing the Dutch quest for new legislation," Land Use Policy, Elsevier, vol. 77(C), pages 821-828.
    12. Villoria, Nelson B. & Liu, Jing, 2018. "Using spatially explicit data to improve our understanding of land supply responses: An application to the cropland effects of global sustainable irrigation in the Americas," Land Use Policy, Elsevier, vol. 75(C), pages 411-419.
    13. Femenia, Fabienne & Letort, Elodie, 2016. "How to significantly reduce pesticide use: An empirical evaluation of the impacts of pesticide taxation associated with a change in cropping practice," Ecological Economics, Elsevier, vol. 125(C), pages 27-37.
    14. Wang, Jieyong & Zhang, Ziwen & Liu, Yansui, 2018. "Spatial shifts in grain production increases in China and implications for food security," Land Use Policy, Elsevier, vol. 74(C), pages 204-213.
    15. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2021. "Cultivated land protection and rational use in China," Land Use Policy, Elsevier, vol. 106(C).
    16. C. W. Rougoor & H. Van Zeijts & M. F. Hofreither & S. Backman, 2001. "Experiences with Fertilizer Taxes in Europe," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 44(6), pages 877-887.
    17. Kumbhakar, Subal C., 1997. "Modeling allocative inefficiency in a translog cost function and cost share equations: An exact relationship," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 351-356.
    18. Min Su & Nico Heerink & Peter Oosterveer & Tao Tan & Shuyi Feng, 2021. "Impacts of China’s Minimum Grain Procurement Price Program on Agrochemical Use: A Household-Level Analysis," Agriculture, MDPI, vol. 11(10), pages 1-20, September.
    19. Alexandre Gohin & Thomas W. Hertel, 2001. "A note on the CES functional form and its use in the GTAP model," Post-Print hal-01931687, HAL.
    20. Antoszewski, Michał, 2019. "Wide-range estimation of various substitution elasticities for CES production functions at the sectoral level," Energy Economics, Elsevier, vol. 83(C), pages 272-289.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esther Devilliers & A. Carpentier, 2019. "Recovering cropping management practices specific production functions: clustering and latent approaches," Post-Print hal-04157853, HAL.
    2. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    3. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    4. François Bareille & Raja Chakir, 2024. "Structural identification of weather impacts on crop yields: Disentangling agronomic from adaptation effects," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(3), pages 989-1019, May.
    5. Dupraz, Pierre, 2021. "Policies for the ecological transition of agriculture: the livestock issue," Review of Agricultural, Food and Environmental Studies, Institut National de la Recherche Agronomique (INRA), vol. 101(4), January.
    6. Hertel, Thomas & Baldos, Uris Lantz & Fuglie, Keith O., 2019. "Trade in Technology: A Potential Solution to the Food Security Challenge of the 21st Century," Conference papers 333121, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Zhang, Qishi & Li, Bo & Liu, Jing-Yu & Deng, Yizhi & Zhang, Runsen & Wu, Wenchao & Geng, Yong, 2024. "Assessing the distributional impacts of ambitious carbon pricing in China's agricultural sector," Ecological Economics, Elsevier, vol. 217(C).
    8. Böcker, Thomas Gerd & Finger, Robert, 2016. "A Meta-Analysis On The Own-Price Elasticity Of Demand For Pesticides," 56th Annual Conference, Bonn, Germany, September 28-30, 2016 244871, German Association of Agricultural Economists (GEWISOLA).
    9. Bontemps, Christophe & Bougherara, Douadia & Nauges, Céline, 2020. "Do Risk Preferences Really Matter? The Case of Pesticide Use in Agriculture," TSE Working Papers 20-1095, Toulouse School of Economics (TSE).
    10. Bougherara, Douadia & Nauges, Céline, 2018. "How laboratory experiments could help disentangle the influences of production risk and risk preferences on input decisions," TSE Working Papers 18-903, Toulouse School of Economics (TSE).
    11. Zhou, Yang & Zhong, Zhen & Cheng, Guoqiang, 2023. "Cultivated land loss and construction land expansion in China: Evidence from national land surveys in 1996, 2009 and 2019," Land Use Policy, Elsevier, vol. 125(C).
    12. Chen, Hang & Meng, Fei & Yu, Zhenning & Tan, Yongzhong, 2022. "Spatial–temporal characteristics and influencing factors of farmland expansion in different agricultural regions of Heilongjiang Province, China," Land Use Policy, Elsevier, vol. 115(C).
    13. Salomé Kahindo & Stéphane Blancard, 2022. "Reducing pesticide use through optimal reallocation at different spatial scales: The case of French arable farming," Agricultural Economics, International Association of Agricultural Economists, vol. 53(4), pages 648-666, July.
    14. Chantal Gascuel & Michèle Tixier-Boichard & Benoit Dedieu & Cécile Détang-Dessendre & Pierre Dupraz & Philippe Faverdin & Laurent Hazard & Philippe Hinsinger & Isabelle Litrico-Chiarelli & Françoise M, 2019. "Réflexion prospective interdisciplinaire pour l’agroécologie. Rapport de synthèse," Post-Print hal-02154433, HAL.
    15. Junjun Zhi & Xinyue Cao & Wangbing Liu & Yang Sun & Da Xu & Caiwei Da & Lei Jin & Jin Wang & Zihao Zheng & Shuyuan Lai & YongJiao Liu & Guohai Zhu, 2023. "Remote Sensing Monitoring and Spatial Pattern Analysis of Non-Grain Production of Cultivated Land in Anhui Province, China," Land, MDPI, vol. 12(8), pages 1-21, July.
    16. Grovermann, Christian & Schreinemachers, Pepijn & Riwthong, Suthathip & Berger, Thomas, 2017. "‘Smart’ policies to reduce pesticide use and avoid income trade-offs: An agent-based model applied to Thai agriculture," Ecological Economics, Elsevier, vol. 132(C), pages 91-103.
    17. Wang, Jieyong & Qu, Lulu & Li, Yurui & Feng, Weilun, 2023. "Identifying the structure of rural regional system and implications for rural revitalization: A case study of Yanchi County in northern China," Land Use Policy, Elsevier, vol. 124(C).
    18. Nielsen, Helle Ørsted & Konrad, Maria Theresia Hedegaard & Pedersen, Anders Branth & Gyldenkærne, Steen, 2023. "Ex-post evaluation of the Danish pesticide tax: A novel and effective tax design," Land Use Policy, Elsevier, vol. 126(C).
    19. Bareille, Francois & Letort, Elodie & Dupraz, Pierre, 2017. "How Do Farmers Manage Their Biodiversity Through Time? A Dynamic Acreage Allocation Model With Productive Feedback," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 260894, European Association of Agricultural Economists.
    20. Thomas G. Böcker & Robert Finger, 2017. "A Meta-Analysis on the Elasticity of Demand for Pesticides," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(2), pages 518-533, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:141:y:2024:i:c:s026483772400108x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.