IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v125y2023ics0264837722005245.html
   My bibliography  Save this article

Co-benefits from tree planting in a typical English agricultural landscape: Comparing the relative effectiveness of hedgerows, agroforestry and woodland creation for improving crop pollination services

Author

Listed:
  • Image, Mike
  • Gardner, Emma
  • Breeze, Tom D.

Abstract

Land use policy in England is encouraging tree planting on farms to meet decarbonisation targets. This could be delivered through woodland creation, hedgerow planting or agroforestry. All three approaches could provide co-benefits for wild bee populations and crop pollination services, by increasing nesting and floral resources, but their relative effectiveness has not been studied at a landscape scale. We simulated six tree planting scenarios and used a validated process-based model to predict their effect on bumblebee abundance and pollination service to two common mass-flowering crops (oilseed rape and field beans) in a representative 10x10km agricultural landscape in England, UK. Two levels of planting intensity were studied: one representing the tree cover that would be achieved by 2035 if the 2020 woodland creation rate continues and another reflecting UK Government ambitions (threefold increase in planting rate). Hedgerow planting and woodland were predicted to give the biggest increase bumblebee abundance. Silvoarable agroforestry using fruit trees or willow was predicted, on average, to give the biggest increase in crop pollination service. However, the magnitude of increase was highly variable and hedgerow creation (which is more dispersed across the landscape) provided a more consistent increase in crop pollination services. Agroforestry with poplar (which offers less floral resource) and woodland creation (which concentrates tree planting in fewer locations) were only effective at enhancing landscape-level crop pollination at high planting intensity. Future land management policy should promote fruit tree and willow-based agroforestry as multifunctional tree planting measures in arable contexts, whilst continuing to encourage hedgerow planting and woodland creation for their role in promoting abundance and diversity of pollinators. Hedgerow planting may be needed alongside agroforestry to help stabilise pollination service through a crop rotation cycle.

Suggested Citation

  • Image, Mike & Gardner, Emma & Breeze, Tom D., 2023. "Co-benefits from tree planting in a typical English agricultural landscape: Comparing the relative effectiveness of hedgerows, agroforestry and woodland creation for improving crop pollination service," Land Use Policy, Elsevier, vol. 125(C).
  • Handle: RePEc:eee:lauspo:v:125:y:2023:i:c:s0264837722005245
    DOI: 10.1016/j.landusepol.2022.106497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837722005245
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2022.106497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arnott, David & Chadwick, David & Harris, Ian & Koj, Aleksandra & Jones, David L., 2019. "What can management option uptake tell us about ecosystem services delivery through agri-environment schemes?," Land Use Policy, Elsevier, vol. 81(C), pages 194-208.
    2. Staton, Tom & Breeze, Tom D. & Walters, Richard J. & Smith, Jo & Girling, Robbie D., 2022. "Productivity, biodiversity trade-offs, and farm income in an agroforestry versus an arable system," Ecological Economics, Elsevier, vol. 191(C).
    3. Olsson, Ola & Bolin, Arvid & Smith, Henrik G. & Lonsdorf, Eric V., 2015. "Modeling pollinating bee visitation rates in heterogeneous landscapes from foraging theory," Ecological Modelling, Elsevier, vol. 316(C), pages 133-143.
    4. Simon G. Potts & Vera Imperatriz-Fonseca & Hien T. Ngo & Marcelo A. Aizen & Jacobus C. Biesmeijer & Thomas D. Breeze & Lynn V. Dicks & Lucas A. Garibaldi & Rosemary Hill & Josef Settele & Adam J. Vanb, 2016. "Safeguarding pollinators and their values to human well-being," Nature, Nature, vol. 540(7632), pages 220-229, December.
    5. Prager, Katrin, 2022. "Implementing policy interventions to support farmer cooperation for environmental benefits," Land Use Policy, Elsevier, vol. 119(C).
    6. Gary D. Powney & Claire Carvell & Mike Edwards & Roger K. A. Morris & Helen E. Roy & Ben A. Woodcock & Nick J. B. Isaac, 2019. "Widespread losses of pollinating insects in Britain," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blaydes, H. & Potts, S.G. & Whyatt, J.D. & Armstrong, A., 2021. "Opportunities to enhance pollinator biodiversity in solar parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Santibañez, Fernanda & Joseph, Julien & Abramson, Guillermo & Kuperman, Marcelo N. & Laguna, María Fabiana & Garibaldi, Lucas A., 2022. "Designing crop pollination services: A spatially explicit agent-based model for real agricultural landscapes," Ecological Modelling, Elsevier, vol. 472(C).
    3. Martin Šlachta & Tomáš Erban & Alena Votavová & Tomáš Bešta & Michal Skalský & Marta Václavíková & Taťána Halešová & Magda Edwards-Jonášová & Renata Včeláková & Pavel Cudlín, 2020. "Domestic Gardens Mitigate Risk of Exposure of Pollinators to Pesticides—An Urban-Rural Case Study Using a Red Mason Bee Species for Biomonitoring," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    4. Carturan, Bruno S. & Siewe, Nourridine & Cobbold, Christina A. & Tyson, Rebecca C., 2023. "Bumble bee pollination and the wildflower/crop trade-off: When do wildflower enhancements improve crop yield?," Ecological Modelling, Elsevier, vol. 484(C).
    5. Bin Han & Jiangli Wu & Qiaohong Wei & Fengying Liu & Lihong Cui & Olav Rueppell & Shufa Xu, 2024. "Life-history stage determines the diet of ectoparasitic mites on their honey bee hosts," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Stefanie Christmann & Youssef Bencharki & Soukaina Anougmar & Pierre Rasmont & Moulay Chrif Smaili & Athanasios Tsivelikas & Aden Aw-Hassan, 2021. "Farming with Alternative Pollinators benefits pollinators, natural enemies, and yields, and offers transformative change to agriculture," Post-Print hal-03355596, HAL.
    7. Joanne Lee Picknoll & Pieter Poot & Michael Renton, 2021. "A New Approach to Inform Restoration and Management Decisions for Sustainable Apiculture," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
    8. Dong Sheng & Siyuan Jing & Xueqing He & Alexandra-Maria Klein & Heinz-R. Köhler & Thomas C. Wanger, 2024. "Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    10. Iovanna, R. & Ando, A & Swinton, S. & Kagan, J. & Hellerstein, D. & Mushet, D. & Otto, C., 2017. "Assessing Pollinator Habitat Services to Optimize Conservation Programs," C-FARE Reports 260678, Council on Food, Agricultural, and Resource Economics (C-FARE).
    11. Hristov, Jordan & Clough, Yann & Sahlin, Ullrika & Smith, Henrik G. & Stjernman, Martin & Olsson, Ola & Sahrbacher, Amanda & Brady, Mark V., 2020. "Impacts of the EU's Common Agricultural Policy “Greening” reform on agricultural development, biodiversity, and ecosystem services," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 42(4), pages 716-738.
    12. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    13. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    14. Bezerra, Antonio Diego M. & Pacheco Filho, Alípio J.S. & Bomfim, Isac G.A. & Smagghe, Guy & Freitas, Breno M., 2019. "Agricultural area losses and pollinator mismatch due to climate changes endanger passion fruit production in the Neotropics," Agricultural Systems, Elsevier, vol. 169(C), pages 49-57.
    15. Eichhorn, Theresa & Schaller, Lena & Hamunen, Katri & Runge, Tania, 2024. "Exploring macro-environmental factors influencing adoption of result-based and collective agri-environmental measures: a PESTLE approach based on stakeholder statements," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 13(1), May.
    16. Laura Melissa Guzman & Elizabeth Elle & Lora A. Morandin & Neil S. Cobb & Paige R. Chesshire & Lindsie M. McCabe & Alice Hughes & Michael Orr & Leithen K. M’Gonigle, 2024. "Impact of pesticide use on wild bee distributions across the United States," Nature Sustainability, Nature, vol. 7(10), pages 1324-1334, October.
    17. Sabine Dritz & Rebecca A. Nelson & Fernanda S. Valdovinos, 2023. "The role of intra-guild indirect interactions in assembling plant-pollinator networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Stephen B. Stewart & Anthony P. O’Grady & Daniel S. Mendham & Greg S. Smith & Philip J. Smethurst, 2022. "Digital Tools for Quantifying the Natural Capital Benefits of Agroforestry: A Review," Land, MDPI, vol. 11(10), pages 1-32, September.
    19. David Urbán-Duarte & José Fernando De La Torre-Sánchez & Yooichi Kainoh & Kazuo Watanabe, 2021. "Biodiversity and Stage of the Art of Three Pollinators Taxa in Mexico: An Overview," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    20. Giulia Capotorti & Simone Valeri & Arianna Giannini & Valerio Minorenti & Mariagrazia Piarulli & Paolo Audisio, 2023. "On the Role of Natural and Induced Landscape Heterogeneity for the Support of Pollinators: A Green Infrastructure Perspective Applied in a Peri-Urban System," Land, MDPI, vol. 12(2), pages 1-29, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:125:y:2023:i:c:s0264837722005245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.