IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49729-5.html
   My bibliography  Save this article

Air pollution disproportionately impairs beneficial invertebrates: a meta-analysis

Author

Listed:
  • James M. W. Ryalls

    (University of Reading)

  • Jacob Bishop

    (University of Reading)

  • Adedayo O. Mofikoya

    (University of Reading)

  • Lisa M. Bromfield

    (University of Reading)

  • Shinichi Nakagawa

    (University of New South Wales
    University of Alberta)

  • Robbie D. Girling

    (University of Reading
    University of Southern Queensland)

Abstract

Air pollution has the potential to disrupt ecologically- and economically-beneficial services provided by invertebrates, including pollination and natural pest regulation. To effectively predict and mitigate this disruption requires an understanding of how the impacts of air pollution vary between invertebrate groups. Here we conduct a global meta-analysis of 120 publications comparing the performance of different invertebrate functional groups in unpolluted and polluted atmospheres. We focus on the pollutants ozone, nitrogen oxides, sulfur dioxide and particulate matter. We show that beneficial invertebrate performance is reduced by air pollution, whereas the performance of plant pest invertebrates is not significantly affected. Ozone pollution has the most detrimental impacts, and these occur at concentrations below national and international air quality standards. Changes in invertebrate performance are not dependent on air pollutant concentrations, indicating that even low levels of pollution are damaging. Predicted increases in tropospheric ozone could result in unintended consequences to global invertebrate populations and their valuable ecological services.

Suggested Citation

  • James M. W. Ryalls & Jacob Bishop & Adedayo O. Mofikoya & Lisa M. Bromfield & Shinichi Nakagawa & Robbie D. Girling, 2024. "Air pollution disproportionately impairs beneficial invertebrates: a meta-analysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49729-5
    DOI: 10.1038/s41467-024-49729-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49729-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49729-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Viechtbauer, Wolfgang, 2010. "Conducting Meta-Analyses in R with the metafor Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i03).
    2. Simon G. Potts & Vera Imperatriz-Fonseca & Hien T. Ngo & Marcelo A. Aizen & Jacobus C. Biesmeijer & Thomas D. Breeze & Lynn V. Dicks & Lucas A. Garibaldi & Rosemary Hill & Josef Settele & Adam J. Vanb, 2016. "Safeguarding pollinators and their values to human well-being," Nature, Nature, vol. 540(7632), pages 220-229, December.
    3. Robert I. McDonald & Andressa V. Mansur & Fernando Ascensão & M’lisa Colbert & Katie Crossman & Thomas Elmqvist & Andrew Gonzalez & Burak Güneralp & Dagmar Haase & Maike Hamann & Oliver Hillel & Kangn, 2020. "Research gaps in knowledge of the impact of urban growth on biodiversity," Nature Sustainability, Nature, vol. 3(1), pages 16-24, January.
    4. Qike Wang & Genting Liu & Liping Yan & Wentian Xu & Douglas J. Hilton & Xianhui Liu & Wenya Pei & Xinyu Li & Jinbiao Wu & Haifeng Zhao & Dong Zhang & Mark A. Elgar, 2023. "Short-term particulate matter contamination severely compromises insect antennal olfactory perception," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Nan-Ji Jiang & Hetan Chang & Jerrit Weißflog & Franziska Eberl & Daniel Veit & Kerstin Weniger & Bill S. Hansson & Markus Knaden, 2023. "Ozone exposure disrupts insect sexual communication," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Gary D. Powney & Claire Carvell & Mike Edwards & Roger K. A. Morris & Helen E. Roy & Ben A. Woodcock & Nick J. B. Isaac, 2019. "Widespread losses of pollinating insects in Britain," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blaydes, H. & Potts, S.G. & Whyatt, J.D. & Armstrong, A., 2021. "Opportunities to enhance pollinator biodiversity in solar parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Martin Šlachta & Tomáš Erban & Alena Votavová & Tomáš Bešta & Michal Skalský & Marta Václavíková & Taťána Halešová & Magda Edwards-Jonášová & Renata Včeláková & Pavel Cudlín, 2020. "Domestic Gardens Mitigate Risk of Exposure of Pollinators to Pesticides—An Urban-Rural Case Study Using a Red Mason Bee Species for Biomonitoring," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    3. Elena Gazzea & Péter Batáry & Lorenzo Marini, 2023. "Global meta-analysis shows reduced quality of food crops under inadequate animal pollination," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Bin Han & Jiangli Wu & Qiaohong Wei & Fengying Liu & Lihong Cui & Olav Rueppell & Shufa Xu, 2024. "Life-history stage determines the diet of ectoparasitic mites on their honey bee hosts," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Stefanie Christmann & Youssef Bencharki & Soukaina Anougmar & Pierre Rasmont & Moulay Chrif Smaili & Athanasios Tsivelikas & Aden Aw-Hassan, 2021. "Farming with Alternative Pollinators benefits pollinators, natural enemies, and yields, and offers transformative change to agriculture," Post-Print hal-03355596, HAL.
    6. Image, Mike & Gardner, Emma & Breeze, Tom D., 2023. "Co-benefits from tree planting in a typical English agricultural landscape: Comparing the relative effectiveness of hedgerows, agroforestry and woodland creation for improving crop pollination service," Land Use Policy, Elsevier, vol. 125(C).
    7. Bart Verkuil & Serpil Atasayi & Marc L Molendijk, 2015. "Workplace Bullying and Mental Health: A Meta-Analysis on Cross-Sectional and Longitudinal Data," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.
    8. Francesca Pilotto & Ingolf Kühn & Rita Adrian & Renate Alber & Audrey Alignier & Christopher Andrews & Jaana Bäck & Luc Barbaro & Deborah Beaumont & Natalie Beenaerts & Sue Benham & David S. Boukal & , 2020. "Meta-analysis of multidecadal biodiversity trends in Europe," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    9. repec:cup:judgdm:v:15:y:2020:i:6:p:972-988 is not listed on IDEAS
    10. Jonas Schmidt & Tammo H. A. Bijmolt, 2020. "Accurately measuring willingness to pay for consumer goods: a meta-analysis of the hypothetical bias," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 499-518, May.
    11. Dong Sheng & Siyuan Jing & Xueqing He & Alexandra-Maria Klein & Heinz-R. Köhler & Thomas C. Wanger, 2024. "Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Mario Herberz & Tobias Brosch & Ulf J. J. Hahnel, 2020. "Kilo what? Default units increase value sensitivity in joint evaluations of energy efficiency," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(6), pages 972-988, November.
    13. Maier, Maximilian & VanderWeele, Tyler J. & Mathur, Maya B, 2021. "Using Selection Models to Assess Sensitivity to Publication Bias: A Tutorial and Call for More Routine Use," MetaArXiv tp45u_v1, Center for Open Science.
    14. Piers Steel & Sjoerd Beugelsdijk & Herman Aguinis, 2021. "The anatomy of an award-winning meta-analysis: Recommendations for authors, reviewers, and readers of meta-analytic reviews," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(1), pages 23-44, February.
    15. Yang, Haijiang & Gou, Xiaohua & Niu, Yibo & Shi, Wenwei & Wang, Xinyun & Wei, Yuxin & Maraseni, Tek, 2024. "Assessing pollinator abundance and services to enhance agricultural sustainability and crop yield optimization in the Qilian Mountains," Agricultural Systems, Elsevier, vol. 221(C).
    16. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    17. Augusteijn, Hilde Elisabeth Maria & van Aert, Robbie Cornelis Maria & van Assen, Marcel A. L. M., 2021. "Posterior Probabilities of Effect Sizes and Heterogeneity in Meta-Analysis: An Intuitive Approach of Dealing with Publication Bias," OSF Preprints avkgj, Center for Open Science.
    18. Georgiou, George K. & Guo, Kan & Naveenkumar, Nithya & Vieira, Ana Paula Alves & Das, J.P., 2020. "PASS theory of intelligence and academic achievement: A meta-analytic review," Intelligence, Elsevier, vol. 79(C).
    19. Stephan Kambach & Ingolf Kühn & Bastien Castagneyrol & Helge Bruelheide, 2016. "The Impact of Tree Diversity on Different Aspects of Insect Herbivory along a Global Temperature Gradient - A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-14, November.
    20. Nan Wang & Yuxiang Luan & Rui Ma, 2024. "Detecting causal relationships between work motivation and job performance: a meta-analytic review of cross-lagged studies," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    21. repec:cup:judgdm:v:14:y:2019:i:3:p:234-279 is not listed on IDEAS
    22. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49729-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.