IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v120y2022ics0264837722003313.html
   My bibliography  Save this article

Examining the spatial simulation and land-use reorganisation mechanism of agricultural suburban settlements using a cellular-automata and agent-based model: Six settlements in China

Author

Listed:
  • Jiang, Xue
  • Li, Bingxin
  • Zhao, Hongyu
  • Zhang, Qiqi
  • Song, Xiaoya
  • Zhang, Haoran

Abstract

Peri-urban land-use development is an important representation of urban-rural system evolution in developing countries. As the modern agriculture industry promotes rapid spatial pattern changes, modelling this phenomenon is of considerable interest to urban planners and city managers. Several methods have been developed to simulate the dynamics of land-use changes. However, the complexity of such dynamics can impede the usefulness of simulation methods. In this paper, a new cellular-automata and agent-based model (CA-ABM) is introduced into the spatial simulation and reorganisation of peri-urban areas. This simulation and predictive model uses the geographic information system platform and cellular automata tool. The basic components of this dynamic bottom-up approach are the actors in land-use development. Using six settlements from plains, hilly, and mountainous areas as examples combined with field investigation, remote sensing images, official land-use planning, and other data, this study analysed land-use evolution under the influence of farmers, developers, and government agents to illustrate the spatial simulation and land-use reorganisation mechanism of agricultural suburban settlements. Compared with previous studies, this study shows that the CA-ABM can reflect the dynamic behaviour of agents and successfully fuses peri-urban settlement attributes and spatially accurate simulation. Simultaneously, the proposed spatial optimisation mechanism provides a reference for the spatial reorganisation of agricultural suburban zones worldwide.

Suggested Citation

  • Jiang, Xue & Li, Bingxin & Zhao, Hongyu & Zhang, Qiqi & Song, Xiaoya & Zhang, Haoran, 2022. "Examining the spatial simulation and land-use reorganisation mechanism of agricultural suburban settlements using a cellular-automata and agent-based model: Six settlements in China," Land Use Policy, Elsevier, vol. 120(C).
  • Handle: RePEc:eee:lauspo:v:120:y:2022:i:c:s0264837722003313
    DOI: 10.1016/j.landusepol.2022.106304
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837722003313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2022.106304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ustaoglu, E. & Sisman, S. & Aydınoglu, A.C., 2021. "Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques," Ecological Modelling, Elsevier, vol. 455(C).
    2. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2020. "Land use change and driving factors in rural China during the period 1995-2015," Land Use Policy, Elsevier, vol. 99(C).
    3. Prinsloo, Gerro & Dobson, Robert & Mammoli, Andrea, 2018. "Synthesis of an intelligent rural village microgrid control strategy based on smartgrid multi-agent modelling and transactive energy management principles," Energy, Elsevier, vol. 147(C), pages 263-278.
    4. Amadou, Mahamadou L. & Villamor, Grace B. & Kyei-Baffour, Nicholas, 2018. "Simulating agricultural land-use adaptation decisions to climate change: An empirical agent-based modelling in northern Ghana," Agricultural Systems, Elsevier, vol. 166(C), pages 196-209.
    5. Song, Wei & Li, Huanhuan, 2020. "Spatial pattern evolution of rural settlements from 1961 to 2030 in Tongzhou District, China," Land Use Policy, Elsevier, vol. 99(C).
    6. An, Li, 2012. "Modeling human decisions in coupled human and natural systems: Review of agent-based models," Ecological Modelling, Elsevier, vol. 229(C), pages 25-36.
    7. Liu, Dongya & Zheng, Xinqi & Wang, Hongbin, 2020. "Land-use Simulation and Decision-Support system (LandSDS): Seamlessly integrating system dynamics, agent-based model, and cellular automata," Ecological Modelling, Elsevier, vol. 417(C).
    8. Li, Feixue & Li, Zhifeng & Chen, Honghua & Chen, Zhenjie & Li, Manchun, 2020. "An agent-based learning-embedded model (ABM-learning) for urban land use planning: A case study of residential land growth simulation in Shenzhen, China," Land Use Policy, Elsevier, vol. 95(C).
    9. Chen, Lili & Zhao, Hongsheng & Song, Ge & Liu, Ye, 2021. "Optimization of cultivated land pattern for achieving cultivated land system security: A case study in Heilongjiang Province, China," Land Use Policy, Elsevier, vol. 108(C).
    10. Wen, Yangyang & Zhang, Zhengfeng & Liang, Di & Xu, Ze, 2020. "Rural Residential Land Transition in the Beijing-Tianjin-Hebei Region: Spatial-Temporal Patterns and Policy Implications," Land Use Policy, Elsevier, vol. 96(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heng Liu & Lu Zhou & Diwei Tang, 2022. "Urban Expansion Simulation Coupled with Residential Location Selection and Land Acquisition Bargaining: A Case Study of Wuhan Urban Development Zone, Central China’s Hubei Province," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    2. Li, Long & Huang, Xianjin & Yang, Hong, 2023. "Optimizing land use patterns to improve the contribution of land use planning to carbon neutrality target," Land Use Policy, Elsevier, vol. 135(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuan Luo & Zhaomin Tong & Yifan Xie & Rui An & Zhaochen Yang & Yanfang Liu, 2022. "Land Use Change under Population Migration and Its Implications for Human–Land Relationship," Land, MDPI, vol. 11(6), pages 1-22, June.
    2. Zagaria, Cecilia & Schulp, Catharina J.E. & Zavalloni, Matteo & Viaggi, Davide & Verburg, Peter H., 2021. "Modelling transformational adaptation to climate change among crop farming systems in Romagna, Italy," Agricultural Systems, Elsevier, vol. 188(C).
    3. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    4. Lili Liu & Meng Chen & Pingping Luo & Maochuan Hu & Weili Duan & Ahmed Elbeltagi, 2023. "A Novel Integrated Spatiotemporal-Variable Model of Landscape Changes in Traditional Villages in the Jinshaan Gorge, Yellow River Basin," Land, MDPI, vol. 12(9), pages 1-28, August.
    5. Giacomo Ravaioli & Tiago Domingos & Ricardo F. M. Teixeira, 2023. "A Framework for Data-Driven Agent-Based Modelling of Agricultural Land Use," Land, MDPI, vol. 12(4), pages 1-17, March.
    6. Senkai Xie & Wenjia Zhang & Yi Zhao & De Tong, 2022. "Extracting Land Use Change Patterns of Rural Town Settlements with Sequence Alignment Method," Land, MDPI, vol. 11(2), pages 1-17, February.
    7. Yanqi Zhao & Yue Zhang & Ying Yang & Fan Li & Rongkun Dai & Jianlin Li & Mingshi Wang & Zhenhua Li, 2023. "The Impact of Land Use Structure Change on Utilization Performance in Henan Province, China," IJERPH, MDPI, vol. 20(5), pages 1-18, February.
    8. Zhao, Xiang & Cai, Bocheng & He, Jianhua & Kong, Xuesong, 2024. "Identifying potential rural residential areas for land consolidation using a data driven agent-based model," Land Use Policy, Elsevier, vol. 145(C).
    9. Grace B. Villamor & Andrew Dunningham & Philip Stahlmann-Brown & Peter W. Clinton, 2022. "Improving the Representation of Climate Change Adaptation Behaviour in New Zealand’s Forest Growing Sector," Land, MDPI, vol. 11(3), pages 1-18, March.
    10. Xiaowei Yao & Di Wu, 2023. "Spatiotemporal Changes and Influencing Factors of Rural Settlements in the Middle Reaches of the Yangtze River Region, 1990–2020," Land, MDPI, vol. 12(9), pages 1-23, September.
    11. Xiuyan Zhao & Changhong Miao, 2022. "Spatial-Temporal Changes and Simulation of Land Use in Metropolitan Areas: A Case of the Zhengzhou Metropolitan Area, China," IJERPH, MDPI, vol. 19(21), pages 1-27, October.
    12. Houtian Tang & Yuanlai Wu & Jinxiu Chen & Liuxin Deng & Minjie Zeng, 2022. "How Does Change in Rural Residential Land Affect Cultivated Land Use Efficiency? An Empirical Study Based on 42 Cities in the Middle Reaches of the Yangtze River," Land, MDPI, vol. 11(12), pages 1-20, December.
    13. Heng Liu & Lu Zhou & Diwei Tang, 2022. "Urban Expansion Simulation Coupled with Residential Location Selection and Land Acquisition Bargaining: A Case Study of Wuhan Urban Development Zone, Central China’s Hubei Province," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    14. Zhiyuan Yang & Dong Yang & Jingjie Geng & Fengxia Tian, 2022. "Evaluation of Suitability and Spatial Distribution of Rural Settlements in the Karst Mountainous Area of China," Land, MDPI, vol. 11(11), pages 1-21, November.
    15. Yiyi Zhang & Yangbing Li & Guangjie Luo & Xiaoyong Bai & Juan Huang & Fang Tang & Meng Yu, 2022. "Analysis of the Land Use Dynamics of Different Rural Settlement Types in the Karst Trough Valleys of Southwest China," Land, MDPI, vol. 11(9), pages 1-25, September.
    16. Guanglian Luo & Bin Wang & Bin Li & Ruiwei Li & Dongqi Luo, 2022. "Quantitative Analysis of Spatial–Temporal Differentiation of Rural Settlements Extinction in Mountainous Areas Based on Reclamation Projects: A Case Study of Chongqing, China," Land, MDPI, vol. 11(8), pages 1-16, August.
    17. Liu, Chenyu & Song, Changqing & Ye, Sijing & Cheng, Feng & Zhang, Leina & Li, Chao, 2023. "Estimate provincial-level effectiveness of the arable land requisition-compensation balance policy in mainland China in the last 20 years," Land Use Policy, Elsevier, vol. 131(C).
    18. Williams, T.G. & Guikema, S.D. & Brown, D.G. & Agrawal, A., 2020. "Resilience and equity: Quantifying the distributional effects of resilience-enhancing strategies in a smallholder agricultural system," Agricultural Systems, Elsevier, vol. 182(C).
    19. Wang, Yuxia & Cao, Wenpu & Gao, Minyi & Gao, Yukun & Chi, Xingyu & Meng, Xing & Li, Shuang & Hu, Guohua, 2024. "Examining spatial coordination of human-land-industry-service system from a regionalization approach: A case study of Beijing," Land Use Policy, Elsevier, vol. 137(C).
    20. Ficko, Andrej & Boncina, Andrej, 2013. "Probabilistic typology of management decision making in private forest properties," Forest Policy and Economics, Elsevier, vol. 27(C), pages 34-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:120:y:2022:i:c:s0264837722003313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.