IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v115y2022ics0264837722000461.html
   My bibliography  Save this article

Spatial-temporal trade-offs of land multi-functionality and function zoning at finer township scale in the middle reaches of the Heihe River

Author

Listed:
  • Meng, Jijun
  • Cheng, Haoran
  • Li, Feng
  • Han, Ziyan
  • Wei, Chanjuan
  • Wu, Yingdi
  • You, Ng Wuh
  • Zhu, Likai

Abstract

Trade-off occurs when two or more land use functions compete with each other, and high degree of trade-off tends to impede the maximization of land resource utility. Identifying the pattern of trade-offs among multiple land functions is an essential way to achieve sustainable land management. However, effective governance depends heavily on the trade-off information at finer scales which is difficult to acquire due to the challenges in collecting social and economic data at these scales. To overcome this limitation, we developed a framework to reveal the spatio-temporal pattern of land multi-functionality in the middle reaches of the Heihe River in 2006 and 2016 at the township scale by assimilating datasets from multiple sources especially including remote sensing and Internet-based geospatial data. Then we examined the trade-offs and synergy among different land functions by correlation analysis and bivariate spatial autocorrelation analysis. Finally, we conducted land function zoning analysis using the k-means clustering method to get different zones for the purpose of land management. The results showed that land multi-functionality in the middle reaches of the Heihe River showed highly temporal and spatial variations, which was characterized by the strongest economic and social functions around town centers, the strongest environmental functions at the mountainous areas, and the prominent social functions in the ethnic towns. The quantified value of land multi-functionality increased rapidly by 35.0% from 2006 to 2016 with economic, social and environmental function increasing by 61.4%, 47.8% and 6.4% respectively. The trade-offs and synergies among land functions were complex. The synergy between economic function and social function was at a high level and stable, while the trade-off between environmental function and economic function was high but slightly weakened. We identified three hotspots of trade-offs and synergies among multiple land functions, which corresponded to low-intensity development, high-intensity development, and restrictive development for restoration and protection. Based on the trade-offs and synergies among land functions, we classified the study area into four zones, which were useful for land management. Our research highlights the use of Internet-based geospatial and remote sensing data to get fine-scale information about land multi-functionality, and provides scientific guidelines for sustainable land use.

Suggested Citation

  • Meng, Jijun & Cheng, Haoran & Li, Feng & Han, Ziyan & Wei, Chanjuan & Wu, Yingdi & You, Ng Wuh & Zhu, Likai, 2022. "Spatial-temporal trade-offs of land multi-functionality and function zoning at finer township scale in the middle reaches of the Heihe River," Land Use Policy, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:lauspo:v:115:y:2022:i:c:s0264837722000461
    DOI: 10.1016/j.landusepol.2022.106019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837722000461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2022.106019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Chao & Xu, Yueqing & Lu, Xinhai & Han, Jing, 2021. "Trade-offs and driving forces of land use functions in ecologically fragile areas of northern Hebei Province: Spatiotemporal analysis," Land Use Policy, Elsevier, vol. 104(C).
    2. Jiang, Song & Meng, Jijun & Zhu, Likai, 2020. "Spatial and temporal analyses of potential land use conflict under the constraints of water resources in the middle reaches of the Heihe River," Land Use Policy, Elsevier, vol. 97(C).
    3. Zhuxiao Yu & Erqi Xu & Hongqi Zhang & Erping Shang, 2020. "Spatio-Temporal Coordination and Conflict of Production-Living-Ecology Land Functions in the Beijing-Tianjin-Hebei Region, China," Land, MDPI, vol. 9(5), pages 1-22, May.
    4. Verweij, P.J.F.M. & Knapen, M.J.R. & de Winter, W.P. & Wien, J.J.F. & te Roller, J.A. & Sieber, S. & Jansen, J.M.L., 2010. "An IT perspective on integrated environmental modelling: The SIAT case," Ecological Modelling, Elsevier, vol. 221(18), pages 2167-2176.
    5. Kanter, David R. & Musumba, Mark & Wood, Sylvia L.R. & Palm, Cheryl & Antle, John & Balvanera, Patricia & Dale, Virginia H. & Havlik, Petr & Kline, Keith L. & Scholes, R.J. & Thornton, Philip & Titton, 2018. "Evaluating agricultural trade-offs in the age of sustainable development," Agricultural Systems, Elsevier, vol. 163(C), pages 73-88.
    6. Gao, Jinlong & Liu, Yansui & Chen, Jianglong, 2020. "China’s initiatives towards rural land system reform," Land Use Policy, Elsevier, vol. 94(C).
    7. Feng, Weilun & Liu, Yansui & Qu, Lulu, 2019. "Effect of land-centered urbanization on rural development: A regional analysis in China," Land Use Policy, Elsevier, vol. 87(C).
    8. Guifang Li & Dingyang Zhou & Minjun Shi, 2019. "How Do Farmers Respond to Water Resources Management Policy in the Heihe River Basin of China?," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    9. Zhanqi Wang & Jun Yang & Xiangzheng Deng & Xi Lan, 2015. "Optimal Water Resources Allocation under the Constraint of Land Use in the Heihe River Basin of China," Sustainability, MDPI, vol. 7(2), pages 1-18, February.
    10. Lester, Sarah E. & Costello, Christopher & Halpern, Benjamin S. & Gaines, Steven D. & White, Crow & Barth, John A., 2013. "Evaluating tradeoffs among ecosystem services to inform marine spatial planning," Marine Policy, Elsevier, vol. 38(C), pages 80-89.
    11. Lei Gao & Brett A. Bryan, 2017. "Finding pathways to national-scale land-sector sustainability," Nature, Nature, vol. 544(7649), pages 217-222, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Luo & Xuebing Zhang & Peiji Shi, 2022. "Land Use Multi-Functionality and Zoning Governance Strategy of Densely Populated Areas in the Upper Reaches of the Yellow River: A Case Study of the Lanzhou–Xining Region, China," Land, MDPI, vol. 11(6), pages 1-23, June.
    2. Xigui Li & Pengnan Xiao & Yong Zhou & Jie Xu & Qing Wu, 2022. "The Spatiotemporal Evolution Characteristics of Cultivated Land Multifunction and Its Trade-Off/Synergy Relationship in the Two Lake Plains," IJERPH, MDPI, vol. 19(22), pages 1-34, November.
    3. Yifang Wang & Linlin Cheng & Yang Zheng, 2022. "Rural Effectiveness Evaluation: A New Way of Assessing Village Development Status," Sustainability, MDPI, vol. 14(15), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dang, Yuxuan & Zhao, Zhenting & Kong, Xiangbin & Lei, Ming & Liao, Yubo & Xie, Zhen & Song, Wei, 2023. "Discerning the process of cultivated land governance transition in China since the reform and opening-up-- Based on the multiple streams framework," Land Use Policy, Elsevier, vol. 133(C).
    2. Shunqian Gao & Liu Yang & Hongzan Jiao, 2022. "Changes in and Patterns of the Tradeoffs and Synergies of Production-Living-Ecological Space: A Case Study of Longli County, Guizhou Province, China," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    3. Yanru Zhao & Xiaomin Zhao & Xinyi Huang & Jiaxin Guo & Guohui Chen, 2022. "Identifying a Period of Spatial Land Use Conflicts and Their Driving Forces in the Pearl River Delta," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    4. Guanglong Dong & Wenxin Zhang & Xinliang Xu & Kun Jia, 2021. "Multi-Dimensional Feature Recognition and Policy Implications of Rural Human–Land Relationships in China," Land, MDPI, vol. 10(10), pages 1-17, October.
    5. Rongxi Peng & Tao Liu & Guangzhong Cao, 2023. "Valuating Multifunctionality of Land Use for Sustainable Development: Framework, Method, and Application," Land, MDPI, vol. 12(1), pages 1-19, January.
    6. Han, Bo & Jin, Xiaobin & Sun, Rui & Li, Hanbing & Liang, Xinyuan & Zhou, Yinkang, 2023. "Understanding land-use sustainability with a systematical framework: An evaluation case of China," Land Use Policy, Elsevier, vol. 132(C).
    7. Zhang, Jing & Li, Sinan & Lin, Naifa & Lin, Yue & Yuan, Shaofeng & Zhang, Ling & Zhu, Jinxia & Wang, Ke & Gan, Muye & Zhu, Congmou, 2022. "Spatial identification and trade-off analysis of land use functions improve spatial zoning management in rapid urbanized areas, China," Land Use Policy, Elsevier, vol. 116(C).
    8. Barbara Langlois & Vincent Martinet, 2023. "Defining cost-effective ways to improve ecosystem services provision in agroecosystems," Review of Agricultural, Food and Environmental Studies, Springer, vol. 104(2), pages 123-165, June.
    9. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    10. Zihao Li & Xihang Xie & Xinyue Yan & Tingting Bai & Dong Xu, 2022. "Impact of China’s Rural Land Marketization on Ecological Environment Quality Based on Remote Sensing," IJERPH, MDPI, vol. 19(19), pages 1-21, October.
    11. Xing Liu & Zhaoyang Cai & Yan Xu & Huihui Zheng & Kaige Wang & Fengrong Zhang, 2022. "Suitability Evaluation of Cultivated Land Reserved Resources in Arid Areas Based on Regional Water Balance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1463-1479, March.
    12. Chong Meng & Siyang Zhou & Wei Li, 2021. "An Optimization Model for Water Management under the Dual Constraints of Water Pollution and Water Scarcity in the Fenhe River Basin, North China," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    13. Pomeroy, Caroline & Hall-Arber, Madeleine & Conway, Flaxen, 2015. "Power and perspective: Fisheries and the ocean commons beset by demands of development," Marine Policy, Elsevier, vol. 61(C), pages 339-346.
    14. Yi Xiao & Yuantao Liao & Zhe Li & Zhuojun Li & Shaojian Wang, 2023. "Impacts of Land Urbanization on CO 2 Emissions: Policy Implications Based on Developmental Stages," Land, MDPI, vol. 12(10), pages 1-15, October.
    15. Nancy Diana Panta, 2020. "Applying Value Chain Analysis through the Lens of Sustainability to Enterprises in the Beekeeping Sector," Book chapters-LUMEN Proceedings, in: Adriana Grigorescu & Valentin Radu (ed.), 1st International Conference Global Ethics - Key of Sustainability (GEKoS), edition 1, volume 11, chapter 12, pages 107-116, Editura Lumen.
    16. Weilun Feng & Yurui Li, 2021. "Measuring the Ecological Safety Effects of Land Use Transitions Promoted by Land Consolidation Projects: The Case of Yan’an City on the Loess Plateau of China," Land, MDPI, vol. 10(8), pages 1-15, July.
    17. Tu Nguyen & David M. Kling & Steven J. Dundas & Sally D. Hacker & Daniel K. Lew & Peter Ruggiero & Katherine Roy, 2023. "Quality over Quantity: Nonmarket Values of Restoring Coastal Dunes in the U.S. Pacific Northwest," Land Economics, University of Wisconsin Press, vol. 99(1), pages 63-79.
    18. Cooper, Gregory S. & Rich, Karl M. & Shankar, Bhavani & Rana, Vinay & Ratna, Nazmun N. & Kadiyala, Suneetha & Alam, Mohammad J. & Nadagouda, Sharan B., 2021. "Identifying ‘win-win-win’ futures from inequitable value chain trade-offs: A system dynamics approach," Agricultural Systems, Elsevier, vol. 190(C).
    19. Lifang Wang & Zhenlong Nie & Min Liu & Le Cao & Pucheng Zhu & Qinlong Yuan, 2022. "Rational Allocation of Water Resources in the Arid Area of Northwestern China Based on Numerical Simulations," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    20. Yiqun Wu & Yuan Sun & Congyue Zhou & Yonghua Li & Xuanli Wang & Huifang Yu, 2023. "Spatial–Temporal Characteristics of Carbon Emissions in Mixed-Use Villages: A Sustainable Development Study of the Yangtze River Delta, China," Sustainability, MDPI, vol. 15(20), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:115:y:2022:i:c:s0264837722000461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.