IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v73y2021ics0957178721001326.html
   My bibliography  Save this article

Exploring customer satisfaction in Great Britain's retail energy sector Part I: The comparative use of Trustpilot online reviews in four sectors

Author

Listed:
  • Littlechild, Stephen

Abstract

Online consumer reviews are now widely used and influential. Trustpilot is a relatively new but rapidly growing consumer review and rating website where companies can be active in inviting and responding to reviews. It is most used by retail energy suppliers and mobile phone providers and their customers and least used by supermarkets and banks. Company usage increased from 2019 to 2020, especially in mobiles. Large incumbent companies made least use of Trustpilot. Companies advising customers on energy suppliers are active users and score highly. Charitable and regulatory bodies are little reviewed, are inactive users and have very low scores.

Suggested Citation

  • Littlechild, Stephen, 2021. "Exploring customer satisfaction in Great Britain's retail energy sector Part I: The comparative use of Trustpilot online reviews in four sectors," Utilities Policy, Elsevier, vol. 73(C).
  • Handle: RePEc:eee:juipol:v:73:y:2021:i:c:s0957178721001326
    DOI: 10.1016/j.jup.2021.101298
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178721001326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2021.101298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chrysanthos Dellarocas, 2003. "The Digitization of Word of Mouth: Promise and Challenges of Online Feedback Mechanisms," Management Science, INFORMS, vol. 49(10), pages 1407-1424, October.
    2. Littlechild, Stephen, 2021. "Exploring customer satisfaction in Great Britain's retail energy sector part III: A proposed Overall Customer Satisfaction score," Utilities Policy, Elsevier, vol. 73(C).
    3. Littlechild, Stephen, 2021. "Exploring customer satisfaction in Great Britain's retail energy sector part II: The increasing use of Trustpilot online reviews," Utilities Policy, Elsevier, vol. 73(C).
    4. Xinxin Li & Lorin M. Hitt, 2008. "Self-Selection and Information Role of Online Product Reviews," Information Systems Research, INFORMS, vol. 19(4), pages 456-474, December.
    5. Dellarocas, Chrysanthos, 2003. "The Digitization of Word-of-mouth: Promise and Challenges of Online Feedback Mechanisms," Working papers 4296-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Littlechild, Stephen, 2021. "Exploring customer satisfaction in Great Britain's retail energy sector part II: The increasing use of Trustpilot online reviews," Utilities Policy, Elsevier, vol. 73(C).
    2. Littlechild, Stephen, 2021. "Exploring customer satisfaction in Great Britain's retail energy sector part III: A proposed Overall Customer Satisfaction score," Utilities Policy, Elsevier, vol. 73(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui, Xiang & Klein, Tobias & Stahl, Konrad, 2022. "Learning from Online Ratings," CEPR Discussion Papers 17006, C.E.P.R. Discussion Papers.
    2. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    3. Dominik Gutt & Philipp Herrmann & Mohammad S. Rahman, 2018. "Crowd-Driven Competitive Intelligence: Understanding the Relationship Between Local Market Competition and Online Rating Distributions," Working Papers Dissertations 41, Paderborn University, Faculty of Business Administration and Economics.
    4. Andreas J. Steur & Mischa Seiter, 2021. "Properties of feedback mechanisms on digital platforms: an exploratory study," Journal of Business Economics, Springer, vol. 91(4), pages 479-526, May.
    5. Hyunwoo Hwangbo & Jonghyuk Kim, 2019. "A Text Mining Approach for Sustainable Performance in the Film Industry," Sustainability, MDPI, vol. 11(11), pages 1-16, June.
    6. Xiang Hui & Tobias J. Klein & Konrad Stahl, 2021. "When and Why Do Buyers Rate in Online Markets?," CRC TR 224 Discussion Paper Series crctr224_2021_267v1, University of Bonn and University of Mannheim, Germany.
    7. Hossin Md Altab & Mu Yinping & Hosain Md Sajjad & Adasa Nkrumah Kofi Frimpong & Michelle Frempomaa Frempong & Stephen Sarfo Adu-Yeboah, 2022. "Understanding Online Consumer Textual Reviews and Rating: Review Length With Moderated Multiple Regression Analysis Approach," SAGE Open, , vol. 12(2), pages 21582440221, June.
    8. Littlechild, S., 2020. "Online reviews and customer satisfaction: The use of Trustpilot by UK retail energy suppliers and three other sectors," Cambridge Working Papers in Economics 2086, Faculty of Economics, University of Cambridge.
    9. Jiang, Guoyin & Tadikamalla, Pandu R. & Shang, Jennifer & Zhao, Ling, 2016. "Impacts of knowledge on online brand success: an agent-based model for online market share enhancement," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1093-1103.
    10. Hailiang Chen & Prabuddha De & Yu Jeffrey Hu, 2015. "IT-Enabled Broadcasting in Social Media: An Empirical Study of Artists’ Activities and Music Sales," Information Systems Research, INFORMS, vol. 26(3), pages 513-531, September.
    11. Roma, Paolo & Aloini, Davide, 2019. "How does brand-related user-generated content differ across social media? Evidence reloaded," Journal of Business Research, Elsevier, vol. 96(C), pages 322-339.
    12. Paulo B. Goes & Mingfeng Lin & Ching-man Au Yeung, 2014. "“Popularity Effect” in User-Generated Content: Evidence from Online Product Reviews," Information Systems Research, INFORMS, vol. 25(2), pages 222-238, June.
    13. Marios Kokkodis & Theodoros Lappas, 2020. "Your Hometown Matters: Popularity-Difference Bias in Online Reputation Platforms," Information Systems Research, INFORMS, vol. 31(2), pages 412-430, June.
    14. Marchand, André & Hennig-Thurau, Thorsten & Wiertz, Caroline, 2017. "Not all digital word of mouth is created equal: Understanding the respective impact of consumer reviews and microblogs on new product success," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 336-354.
    15. Kim, Jong Min & Jun, Mina & Kim, Chung K., 2018. "The Effects of Culture on Consumers' Consumption and Generation of Online Reviews," Journal of Interactive Marketing, Elsevier, vol. 43(C), pages 134-150.
    16. Apostolos Filippas & John Horton & Joseph M. Golden, 2017. "Reputation in the Long-Run," CESifo Working Paper Series 6750, CESifo.
    17. Ling Peng & Geng Cui & Yuho Chung & Chunyu Li, 2019. "A multi-facet item response theory approach to improve customer satisfaction using online product ratings," Journal of the Academy of Marketing Science, Springer, vol. 47(5), pages 960-976, September.
    18. Christian Matt & Thomas Hess, 2016. "Product fit uncertainty and its effects on vendor choice: an experimental study," Electronic Markets, Springer;IIM University of St. Gallen, vol. 26(1), pages 83-93, February.
    19. Floyd, Kristopher & Freling, Ryan & Alhoqail, Saad & Cho, Hyun Young & Freling, Traci, 2014. "How Online Product Reviews Affect Retail Sales: A Meta-analysis," Journal of Retailing, Elsevier, vol. 90(2), pages 217-232.
    20. Dirk van Straaten & Vitalik Melnikov & Eyke Hüllermeier & Behnud Mir Djawadi & René Fahr, 2021. "Accounting for Heuristics in Reputation Systems: An Interdisciplinary Approach on Aggregation Processes," Working Papers Dissertations 72, Paderborn University, Faculty of Business Administration and Economics.

    More about this item

    Keywords

    Online reviews; Customer feedback; Trustpilot;
    All these keywords.

    JEL classification:

    • L15 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Information and Product Quality
    • L84 - Industrial Organization - - Industry Studies: Services - - - Personal, Professional, and Business Services
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:73:y:2021:i:c:s0957178721001326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.