IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v83y2023ics0301420723004555.html
   My bibliography  Save this article

Mercury risk reduction in artisanal and small-scale gold mining: A fuzzy AHP-Fuzzy TOPSIS hybrid analysis

Author

Listed:
  • Alhassan, Hadisu
  • Peleato, Nicolás
  • Sadiq, Rehan

Abstract

Decision-making in choosing the appropriate mining technique can be difficult, especially when there are a plethora of alternatives and criteria. Mercury amalgamation has been the most prevalent technique employed in artisanal small-scale gold mining (ASGM) but this has been associated with profound health risk. As part of a process of developing a risk management framework for ASGM, this paper reviews the common mining alternatives and criteria for their selection, and demonstrates a methodology for choosing an optimum technique. A hybrid model of fuzzy AHP and fuzzy TOPSIS has therefore been developed to evaluate mining options. The fuzzy AHP is used to obtain criteria weights while the fuzzy TOPSIS is used in evaluating alternatives in respect of criteria to select the ideal solution.

Suggested Citation

  • Alhassan, Hadisu & Peleato, Nicolás & Sadiq, Rehan, 2023. "Mercury risk reduction in artisanal and small-scale gold mining: A fuzzy AHP-Fuzzy TOPSIS hybrid analysis," Resources Policy, Elsevier, vol. 83(C).
  • Handle: RePEc:eee:jrpoli:v:83:y:2023:i:c:s0301420723004555
    DOI: 10.1016/j.resourpol.2023.103744
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420723004555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.103744?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. L. Morgan & E. S. McLamore & M. Correll & G. A. Kiker, 2021. "Emerging mercury mitigation solutions for artisanal small-scale gold mining communities evaluated through a multicriteria decision analysis approach," Environment Systems and Decisions, Springer, vol. 41(3), pages 413-424, September.
    2. Bosse Jønsson, Jesper & Charles, Elias & Kalvig, Per, 2013. "Toxic mercury versus appropriate technology: Artisanal gold miners’ retort aversion," Resources Policy, Elsevier, vol. 38(1), pages 60-67.
    3. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    4. Alaa Alden Al Mohamed & Sobhi Al Mohamed & Moustafa Zino, 2023. "Application of fuzzy multicriteria decision-making model in selecting pandemic hospital site," Future Business Journal, Springer, vol. 9(1), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    2. Pasura Aungkulanon & Walailak Atthirawong & Pongchanun Luangpaiboon & Wirachchaya Chanpuypetch, 2024. "Navigating Supply Chain Resilience: A Hybrid Approach to Agri-Food Supplier Selection," Mathematics, MDPI, vol. 12(10), pages 1-41, May.
    3. Juan Carlos Martín & Veronika Rudchenko & María-Victoria Sánchez-Rebull, 2020. "The Role of Nationality and Hotel Class on Guests’ Satisfaction. A Fuzzy-TOPSIS Approach Applied in Saint Petersburg," Administrative Sciences, MDPI, vol. 10(3), pages 1-24, September.
    4. Jelena Lukić & Mirjana Misita & Dragan D. Milanović & Ankica Borota-Tišma & Aleksandra Janković, 2022. "Determining the Risk Level in Client Analysis by Applying Fuzzy Logic in Insurance Sector," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    5. Sharma, Mahak & Antony, Rose & Sehrawat, Rajat & Cruz, Angel Contreras & Daim, Tugrul U., 2022. "Exploring post-adoption behaviors of e-service users: Evidence from the hospitality sector /online travel services," Technology in Society, Elsevier, vol. 68(C).
    6. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    7. Chia-Nan Wang & Ngoc-Ai-Thy Nguyen & Thanh-Tuan Dang & Chen-Ming Lu, 2021. "A Compromised Decision-Making Approach to Third-Party Logistics Selection in Sustainable Supply Chain Using Fuzzy AHP and Fuzzy VIKOR Methods," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    8. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    9. Lupo, Toni, 2015. "Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 249-259.
    10. Lixin Shen & Kannan Govindan & Madan Shankar, 2015. "Evaluation of Barriers of Corporate Social Responsibility Using an Analytical Hierarchy Process under a Fuzzy Environment—A Textile Case," Sustainability, MDPI, vol. 7(3), pages 1-22, March.
    11. He-Yau Kang & Amy H. I. Lee & Tzu-Ting Huang, 2016. "Project Management for a Wind Turbine Construction by Applying Fuzzy Multiple Objective Linear Programming Models," Energies, MDPI, vol. 9(12), pages 1-15, December.
    12. Junmin Lee & Keungoui Kim & Hyunha Shin & Junseok Hwang, 2018. "Acceptance Factors of Appropriate Technology: Case of Water Purification Systems in Binh Dinh, Vietnam," Sustainability, MDPI, vol. 10(7), pages 1-20, June.
    13. Alaa Alden Al Mohamed & Sobhi Al Mohamed, 2023. "Application of fuzzy group decision-making selecting green supplier: a case study of the manufacture of natural laurel soap," Future Business Journal, Springer, vol. 9(1), pages 1-20, December.
    14. Noori, Amir & Bonakdari, Hossein & Salimi, Amir Hossein & Gharabaghi, Bahram, 2021. "A group Multi-Criteria Decision-Making method for water supply choice optimization," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    15. Wang, Xiaojun & Chan, Hing Kai & Li, Dong, 2015. "A case study of an integrated fuzzy methodology for green product development," European Journal of Operational Research, Elsevier, vol. 241(1), pages 212-223.
    16. Animesh Biswas & Samir Kumar, 2019. "Generalization of extent analysis method for solving multicriteria decision making problems involving intuitionistic fuzzy numbers," OPSEARCH, Springer;Operational Research Society of India, vol. 56(4), pages 1142-1166, December.
    17. Ezgi Güler & Süheyla Yerel Kandemir, 2024. "Analysis of PM 10 Substances via Intuitionistic Fuzzy Decision-Making and Statistical Evaluation," Sustainability, MDPI, vol. 16(17), pages 1-23, September.
    18. Bojan Srdjevic & Yvonilde Medeiros, 2008. "Fuzzy AHP Assessment of Water Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 877-894, July.
    19. AbdulHafeez Muhammad & Ansar Siddique & Quadri Noorulhasan Naveed & Uzma Khaliq & Ali M. Aseere & Mohd Abul Hasan & Mohamed Rafik N. Qureshi & Basit Shahzad, 2021. "Evaluating Usability of Academic Websites through a Fuzzy Analytical Hierarchical Process," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    20. Wang, Ying-Ming & Luo, Ying & Hua, Zhongsheng, 2008. "On the extent analysis method for fuzzy AHP and its applications," European Journal of Operational Research, Elsevier, vol. 186(2), pages 735-747, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:83:y:2023:i:c:s0301420723004555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.