IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v41y2021i3d10.1007_s10669-021-09808-0.html
   My bibliography  Save this article

Emerging mercury mitigation solutions for artisanal small-scale gold mining communities evaluated through a multicriteria decision analysis approach

Author

Listed:
  • V. L. Morgan

    (University of Illinois)

  • E. S. McLamore

    (University of Florida)

  • M. Correll

    (University of Florida)

  • G. A. Kiker

    (University of Florida)

Abstract

Over 15 million people are involved in artisanal small-scale gold mining (ASGM) globally. Often, ASGM includes smelters that use mercury to extract gold. If mishandled, these actions may cause adverse health effects for smelters and their surrounding communities. There are multiple tools to reduce health risks while maintaining a sustainable economic profit, but each method has trade-offs, such as cost, efficiency, and potential health impacts that are not widely understood. Multicriteria decision analysis (MCDA) is a powerful tool in assessing multiple perspectives and factors that affect stakeholder decisions and can be used to inform smelters and community members on reducing exposure to mercury. Here, MCDA was used to determine the ranks of alternatives to reduce exposure to mercury based on socio-economic, ecological, and human health criteria. Stochastic processes were used to evaluate 12 alternatives, including mitigation strategies (i.e., chelation therapy techniques, retorts, water filters) as well as mercury-free mining substitutes. In this model, the borax method ranked first 72% of the time, followed by the gravity method (19%), a multicapture system retort (7%), and low-cost retorts (≤ 1%). While MCDA is an excellent tool, results tend to be generalized across a heterogenous landscape. More localized factors such as incorrect soil chemistry could cause performance challenges for options like mercury-free mining substitutes. To aid more localized decision-making, a decision tree model was developed to aid stakeholders to explore which alternatives are suitable based on context-specific factors using “Take-the-best” decision heuristics. This work can assist researchers and stakeholders involved with ASGM to identify which options are scalable for their region as well as to mitigate adverse effects of exposure to mercury.

Suggested Citation

  • V. L. Morgan & E. S. McLamore & M. Correll & G. A. Kiker, 2021. "Emerging mercury mitigation solutions for artisanal small-scale gold mining communities evaluated through a multicriteria decision analysis approach," Environment Systems and Decisions, Springer, vol. 41(3), pages 413-424, September.
  • Handle: RePEc:spr:envsyd:v:41:y:2021:i:3:d:10.1007_s10669-021-09808-0
    DOI: 10.1007/s10669-021-09808-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-021-09808-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-021-09808-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mancini, Lucia & Sala, Serenella, 2018. "Social impact assessment in the mining sector: Review and comparison of indicators frameworks," Resources Policy, Elsevier, vol. 57(C), pages 98-111.
    2. Acemoglu, Daron & García-Jimeno, Camilo & Robinson, James A., 2012. "Finding Eldorado: Slavery and long-run development in Colombia," Journal of Comparative Economics, Elsevier, vol. 40(4), pages 534-564.
    3. Tommi Tervonen, 2014. "JSMAA: open source software for SMAA computations," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(1), pages 69-81.
    4. Bosse Jønsson, Jesper & Charles, Elias & Kalvig, Per, 2013. "Toxic mercury versus appropriate technology: Artisanal gold miners’ retort aversion," Resources Policy, Elsevier, vol. 38(1), pages 60-67.
    5. Deniz Okul & Cevriye Gencer & Emel Kizilkaya Aydogan, 2014. "A Method Based on SMAA-Topsis for Stochastic Multi-Criteria Decision Making and a Real-World Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 13(05), pages 957-978.
    6. Lahdelma, Risto & Hokkanen, Joonas & Salminen, Pekka, 1998. "SMAA - Stochastic multiobjective acceptability analysis," European Journal of Operational Research, Elsevier, vol. 106(1), pages 137-143, April.
    7. Zolnikov, T.R., 2017. "My failed attempt to gain access to small-scale gold miners," American Journal of Public Health, American Public Health Association, vol. 107(4), pages 507-508.
    8. repec:aph:ajpbhl:10.2105/ajph.2017.303656_7 is not listed on IDEAS
    9. Adler Miserendino, Rebecca & Bergquist, Bridget A. & Adler, Sara E. & Guimarães, Jean Remy Davée & Lees, Peter S.J. & Niquen, Wilmer & Velasquez-López, P. Colon & Veiga, Marcello M., 2013. "Challenges to measuring, monitoring, and addressing the cumulative impacts of artisanal and small-scale gold mining in Ecuador," Resources Policy, Elsevier, vol. 38(4), pages 713-722.
    10. Sinan Erzurumlu, S. & Erzurumlu, Yaman O., 2015. "Sustainable mining development with community using design thinking and multi-criteria decision analysis," Resources Policy, Elsevier, vol. 46(P1), pages 6-14.
    11. Jeffrey C. Cegan & Ashley M. Filion & Jeffrey M. Keisler & Igor Linkov, 2017. "Trends and applications of multi-criteria decision analysis in environmental sciences: literature review," Environment Systems and Decisions, Springer, vol. 37(2), pages 123-133, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alhassan, Hadisu & Peleato, Nicolás & Sadiq, Rehan, 2023. "Mercury risk reduction in artisanal and small-scale gold mining: A fuzzy AHP-Fuzzy TOPSIS hybrid analysis," Resources Policy, Elsevier, vol. 83(C).
    2. Zachary A. Collier & James H. Lambert & Igor Linkov, 2021. "Integrating data from physical and social science to address emerging societal challenges," Environment Systems and Decisions, Springer, vol. 41(3), pages 331-333, September.
    3. Fernando Morante-Carballo & Néstor Montalván-Burbano & Maribel Aguilar-Aguilar & Paúl Carrión-Mero, 2022. "A Bibliometric Analysis of the Scientific Research on Artisanal and Small-Scale Mining," IJERPH, MDPI, vol. 19(13), pages 1-29, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Pelissari & M. C. Oliveira & S. Ben Amor & A. Kandakoglu & A. L. Helleno, 2020. "SMAA methods and their applications: a literature review and future research directions," Annals of Operations Research, Springer, vol. 293(2), pages 433-493, October.
    2. García-Cáceres, Rafael Guillermo, 2020. "Stochastic Multicriteria Acceptability Analysis – Matching (SMAA-M)," Operations Research Perspectives, Elsevier, vol. 7(C).
    3. Valentin Bertsch & Wolf Fichtner, 2016. "A participatory multi-criteria approach for power generation and transmission planning," Annals of Operations Research, Springer, vol. 245(1), pages 177-207, October.
    4. Luis C. Dias & Carolina Passeira & João Malça & Fausto Freire, 2022. "Integrating life-cycle assessment and multi-criteria decision analysis to compare alternative biodiesel chains," Annals of Operations Research, Springer, vol. 312(2), pages 1359-1374, May.
    5. Yıldız, Taşkın Deniz & Kural, Orhan, 2020. "The effects of the mining operation activities permit process on the mining sector in Turkey," Resources Policy, Elsevier, vol. 69(C).
    6. Wulf, David & Bertsch, Valentin, 2016. "A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making," MPRA Paper 75025, University Library of Munich, Germany.
    7. Aleksandr Rakhmangulov & Konstantin Burmistrov & Nikita Osintsev, 2021. "Sustainable Open Pit Mining and Technical Systems: Concept, Principles, and Indicators," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    8. Cinelli, Marco & Kadziński, Miłosz & Gonzalez, Michael & Słowiński, Roman, 2020. "How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy," Omega, Elsevier, vol. 96(C).
    9. Feng Yang & Shiling Song & Wei Huang & Qiong Xia, 2015. "SMAA-PO: project portfolio optimization problems based on stochastic multicriteria acceptability analysis," Annals of Operations Research, Springer, vol. 233(1), pages 535-547, October.
    10. Yang Ding & Yelin Fu & Kin Keung Lai & W. K. John Leung, 2018. "Using Ranked Weights and Acceptability Analysis to Construct Composite Indicators: A Case Study of Regional Sustainable Society Index," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 139(3), pages 871-885, October.
    11. Su-min Yu & Zhi-jiao Du & Xu-dong Lin & Han-yang Luo & Jian-qiang Wang, 2020. "A Stochastic Dominance-Based Approach for Hotel Selection under Probabilistic Linguistic Environment," Mathematics, MDPI, vol. 8(9), pages 1-25, September.
    12. Yu Yu & Weiwei Zhu & Qian Zhang, 2019. "DEA cross-efficiency evaluation and ranking method based on interval data," Annals of Operations Research, Springer, vol. 278(1), pages 159-175, July.
    13. Garcia-Bernabeu, Ana & Hilario-Caballero, Adolfo & Tardella, Fabio & Pla-Santamaria, David, 2024. "ESG integration in portfolio selection: A robust preference-based multicriteria approach," Operations Research Perspectives, Elsevier, vol. 12(C).
    14. Song, Lianlian & Fu, Yelin & Zhou, Peng & Lai, Kin Keung, 2017. "Measuring national energy performance via Energy Trilemma Index: A Stochastic Multicriteria Acceptability Analysis," Energy Economics, Elsevier, vol. 66(C), pages 313-319.
    15. Fernando Morante-Carballo & Néstor Montalván-Burbano & Maribel Aguilar-Aguilar & Paúl Carrión-Mero, 2022. "A Bibliometric Analysis of the Scientific Research on Artisanal and Small-Scale Mining," IJERPH, MDPI, vol. 19(13), pages 1-29, July.
    16. Hesam Dehghani & Marc Bascompta & Ali Asghar Khajevandi & Kiana Afshar Farnia, 2023. "A Mimic Model Approach for Impact Assessment of Mining Activities on Sustainable Development Indicators," Sustainability, MDPI, vol. 15(3), pages 1-15, February.
    17. Olivier Cailloux & Tommi Tervonen & Boris Verhaegen & François Picalausa, 2014. "A data model for algorithmic multiple criteria decision analysis," Annals of Operations Research, Springer, vol. 217(1), pages 77-94, June.
    18. Fu, Yelin & Lai, Kin Keung & Yu, Lean, 2021. "Multi-nation comparisons of energy architecture performance: A group decision-making method with preference structure and acceptability analysis," Energy Economics, Elsevier, vol. 96(C).
    19. Hook, Andrew, 2019. "Over-spilling institutions: The political ecology of ‘greening’ the small-scale gold mining sector in Guyana," Land Use Policy, Elsevier, vol. 85(C), pages 438-453.
    20. Mustajoki, Jyri & Saarikoski, Heli & Belton, Valerie & Hjerppe, Turo & Marttunen, Mika, 2020. "Utilizing ecosystem service classifications in multi-criteria decision analysis – Experiences of peat extraction case in Finland," Ecosystem Services, Elsevier, vol. 41(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:41:y:2021:i:3:d:10.1007_s10669-021-09808-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.