IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v35y2010i4p276-282.html
   My bibliography  Save this article

Commodity futures and market efficiency: A fractional integrated approach

Author

Listed:
  • Fernandez, Viviana

Abstract

In financial time series, persistence or inertia is a feature usually observable in absolute returns, i.e., a proxy for volatility. Moreover, asset return series should be essentially unpredictable according to the efficiency market hypothesis (EMH) in its weak form. Surprisingly, recent literature has found evidence of anti-persistence in technology stocks and commodity futures returns. Anti-persistence would be indicative of an overreaction of asset prices to incoming information. In this article, we concentrate on a sample of 20 DJ-AIG commodity future indices--including broad indices and sub-indices (e.g., energy, grains, industrial metals, and livestock) over the period January 1991-June 2008. We conclude that returns series either over-react or under-react to new market information, which disconfirms the EMH in its weak form. Such disconfirmation would make it possible for market participants to devise non-linear statistical models for improved index forecasting and derivatives valuation.

Suggested Citation

  • Fernandez, Viviana, 2010. "Commodity futures and market efficiency: A fractional integrated approach," Resources Policy, Elsevier, vol. 35(4), pages 276-282, December.
  • Handle: RePEc:eee:jrpoli:v:35:y:2010:i:4:p:276-282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4207(10)00030-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Los, Cornelis A. & Yu, Bing, 2008. "Persistence characteristics of the Chinese stock markets," International Review of Financial Analysis, Elsevier, vol. 17(1), pages 64-82.
    2. Ané, Thierry & Ureche-Rangau, Loredana, 2008. "Does trading volume really explain stock returns volatility?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(3), pages 216-235, July.
    3. George Kapetanios, 2007. "Measuring Conditional Persistence in Nonlinear Time Series," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(3), pages 363-386, June.
    4. Pasquini, Michele & Serva, Maurizio, 1999. "Multiscaling and clustering of volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 140-147.
    5. Jensen, Mark J., 2000. "An alternative maximum likelihood estimator of long-memory processes using compactly supported wavelets," Journal of Economic Dynamics and Control, Elsevier, vol. 24(3), pages 361-387, March.
    6. Mark J. Jensen, 1997. "Using Wavelets to Obtain a Consistent Ordinary Least Squares Estimator of the Long Memory Parameter," Econometrics 9710002, University Library of Munich, Germany.
    7. Carbone, A. & Castelli, G. & Stanley, H.E., 2004. "Time-dependent Hurst exponent in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 267-271.
    8. Fernandez, Viviana, 2007. "A postcard from the past: The behavior of U.S. stock markets during 1871–1938," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 267-282.
    9. T. Ane & L. Ureche-Rangau, 2008. "Does Trading Volume Really Explain Stock Returns Volatility ?," Post-Print hal-00260668, HAL.
    10. John T. Barkoulas & Christopher F. Baum & Nickolaos Travlos, 1996. "Long Memory in the Greek Stock Market," Boston College Working Papers in Economics 356., Boston College Department of Economics.
    11. Christopher F. Baum & John Barkoulas, 2006. "Long-memory forecasting of US monetary indices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 291-302.
    12. Mulligan, Robert F., 2004. "Fractal analysis of highly volatile markets: an application to technology equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 155-179, February.
    13. Ahn, Sung K. & Reinsel, Gregory C., 1994. "Estimation of partially nonstationary vector autoregressive models with seasonal behavior," Journal of Econometrics, Elsevier, vol. 62(2), pages 317-350, June.
    14. Mielniczuk, J. & Wojdyllo, P., 2007. "Estimation of Hurst exponent revisited," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4510-4525, May.
    15. Mills, Terence C., 2004. "Statistical analysis of daily gold price data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 559-566.
    16. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    17. Connor Jeff & Rossiter Rosemary, 2005. "Wavelet Transforms and Commodity Prices," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(1), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    2. Charfeddine, Lanouar, 2016. "Breaks or long range dependence in the energy futures volatility: Out-of-sample forecasting and VaR analysis," Economic Modelling, Elsevier, vol. 53(C), pages 354-374.
    3. Proelss, Juliane & Schweizer, Denis & Seiler, Volker, 2020. "The economic importance of rare earth elements volatility forecasts," International Review of Financial Analysis, Elsevier, vol. 71(C).
    4. Duan, Kun & Li, Zeming & Urquhart, Andrew & Ye, Jinqiang, 2021. "Dynamic efficiency and arbitrage potential in Bitcoin: A long-memory approach," International Review of Financial Analysis, Elsevier, vol. 75(C).
    5. Herrera, Rodrigo & Rodriguez, Alejandro & Pino, Gabriel, 2017. "Modeling and forecasting extreme commodity prices: A Markov-Switching based extreme value model," Energy Economics, Elsevier, vol. 63(C), pages 129-143.
    6. Wang, Yudong & Wu, Chongfeng, 2012. "Long memory in energy futures markets: Further evidence," Resources Policy, Elsevier, vol. 37(3), pages 261-272.
    7. Yudong Wang & Chongfeng Wu, 2013. "Efficiency of Crude Oil Futures Markets: New Evidence from Multifractal Detrending Moving Average Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 42(4), pages 393-414, December.
    8. repec:ipg:wpaper:2014-503 is not listed on IDEAS
    9. Julio C. Alonso & Andrés M. Arcila, 2014. "Eficiencia semifuerte del mercado internacional del azúcar entre los anos 2001 y 2011," Revista Cuadernos de Economia, Universidad Nacional de Colombia, FCE, CID, June.
    10. Liu, Li & Chen, Ching-Cheng & Wan, Jieqiu, 2013. "Is world oil market “one great pool”?: An example from China's and international oil markets," Economic Modelling, Elsevier, vol. 35(C), pages 364-373.
    11. Juan Benjamín Duarte Duarte & Juan Manuel Mascare?nas Pérez-Iñigo, 2014. "Comprobación de la eficiencia débil en los principales mercados financieros latinoamericanos," Estudios Gerenciales, Universidad Icesi, November.
    12. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.
    13. Zhang, Bing, 2013. "Are the crude oil markets becoming more efficient over time? New evidence from a generalized spectral test," Energy Economics, Elsevier, vol. 40(C), pages 875-881.
    14. Yaya, OlaOluwa S. & Tumala, Mohammed M. & Udomboso, Christopher G., 2016. "Volatility persistence and returns spillovers between oil and gold prices: Analysis before and after the global financial crisis," Resources Policy, Elsevier, vol. 49(C), pages 273-281.
    15. Charfeddine, Lanouar, 2014. "True or spurious long memory in volatility: Further evidence on the energy futures markets," Energy Policy, Elsevier, vol. 71(C), pages 76-93.
    16. Hooi Hooi Lean & Russell Smyth, 2015. "Testing for weak-form efficiency of crude palm oil spot and future markets: new evidence from a GARCH unit root test with multiple structural breaks," Applied Economics, Taylor & Francis Journals, vol. 47(16), pages 1710-1721, April.
    17. Ciner, Cetin & Lucey, Brian & Yarovaya, Larisa, 2020. "Spillovers, integration and causality in LME non-ferrous metal markets," Journal of Commodity Markets, Elsevier, vol. 17(C).
    18. Liu, Li & Wang, Yudong & Yang, Li, 2018. "Predictability of crude oil prices: An investor perspective," Energy Economics, Elsevier, vol. 75(C), pages 193-205.
    19. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Mefteh-Wali, Salma & Owusu, Patrick, 2023. "Measuring price efficiency in petroleum markets: New insights using various long-range dependence techniques," Resources Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernandez Viviana, 2011. "Alternative Estimators of Long-Range Dependence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(2), pages 1-37, March.
    2. Patrick M. Crowley, 2007. "A Guide To Wavelets For Economists," Journal of Economic Surveys, Wiley Blackwell, vol. 21(2), pages 207-267, April.
    3. SangKun Bae & Mark J. Jensen, 1998. "Long-Run Neutrality in a Long-Memory Model," Macroeconomics 9809006, University Library of Munich, Germany, revised 21 Apr 1999.
    4. Avishek Bhandari & Bandi Kamaiah, 2021. "Long Memory and Fractality Among Global Equity Markets: a Multivariate Wavelet Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 23-37, March.
    5. Bhandari, Avishek, 2020. "Long Memory and Correlation Structures of Select Stock Returns Using Novel Wavelet and Fractal Connectivity Networks," MPRA Paper 101946, University Library of Munich, Germany.
    6. Chaker Aloui & Duc Khuong Nguyen, 2014. "On the detection of extreme movements and persistent behaviour in Mediterranean stock markets: a wavelet-based approach," Applied Economics, Taylor & Francis Journals, vol. 46(22), pages 2611-2622, August.
    7. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
    8. Crowley, Patrick M., 2005. "An intuitive guide to wavelets for economists," Bank of Finland Research Discussion Papers 1/2005, Bank of Finland.
    9. Fernandez, Viviana, 2009. "The behavior of stock returns in the mining industry following the Iraq war," Research in International Business and Finance, Elsevier, vol. 23(3), pages 274-292, September.
    10. Haven, Emmanuel & Liu, Xiaoquan & Shen, Liya, 2012. "De-noising option prices with the wavelet method," European Journal of Operational Research, Elsevier, vol. 222(1), pages 104-112.
    11. Collet J.J. & Fadili J.M., 2005. "Simulation of Gegenbauer processes using wavelet packets," School of Economics and Finance Discussion Papers and Working Papers Series 190, School of Economics and Finance, Queensland University of Technology.
    12. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    13. Tiwari, Aviral Kumar & Kumar, Satish & Pathak, Rajesh & Roubaud, David, 2019. "Testing the oil price efficiency using various measures of long-range dependence," Energy Economics, Elsevier, vol. 84(C).
    14. Erhard Reschenhofer & Manveer K. Mangat, 2020. "Reducing the Bias of the Smoothed Log Periodogram Regression for Financial High-Frequency Data," Econometrics, MDPI, vol. 8(4), pages 1-15, October.
    15. Benjamin Rainer Auer, 2018. "Are standard asset pricing factors long-range dependent?," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 42(1), pages 66-88, January.
    16. In, Francis & Kim, Sangbae, 2006. "Multiscale hedge ratio between the Australian stock and futures markets: Evidence from wavelet analysis," Journal of Multinational Financial Management, Elsevier, vol. 16(4), pages 411-423, October.
    17. Bae, Sang-Kun & Jensen, Mark J. & Murdock, Scott G., 2005. "Long-run neutrality in a fractionally integrated model," Journal of Macroeconomics, Elsevier, vol. 27(2), pages 257-274, June.
    18. Tan, Pei P. & Galagedera, Don U.A. & Maharaj, Elizabeth A., 2012. "A wavelet based investigation of long memory in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2330-2341.
    19. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    20. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:35:y:2010:i:4:p:276-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.