IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v89y2020ics0966692320309662.html
   My bibliography  Save this article

Generating a spatial coverage plan for the emergency medical service on a regional scale: Empirical versus random forest modelling approach

Author

Listed:
  • Dolejš, Martin
  • Purchard, Jan
  • Javorčák, Adam

Abstract

Adequate spatial coverage by the emergency medical service and the ability to reach any location in the area of interest in the shortest possible time are crucial for the survival of patients with serious conditions. Knowledge of blind spots (i.e. sites that cannot be reached within the required time) represents key information for improving the service quality and may lead, e.g. to a relocation of bases or to other active interventions. Spatial coverage can be derived from experience based on historical data. Such an approach may be problematic if a larger area is being analysed, especially if data is not available for some parts of such areas or if no data is available. To eliminate such problems, we created a prediction model utilising the random forest ensemble learning method. The model is capable of predicting the travel time based on available historical data on ambulance movements (GPS) and the geometric and construction characteristics of individual road segments. We therefore collaborated with the regional public administration and emergency medical service authorities to deliver a time- and resource-efficient solution for emergency spatial planning practice. The outputs from the newly built model were subsequently validated against data from an empirical model currently used by the regional authorities. The results from both models were compared from the perspective of performance in various seasonal and time-of-day conditions. The prediction of travel times using the new model improved according to all the evaluated validation metrics. The importance and applicability of the foregoing model lies in the fact that it can be incorporated into the current emergency medical service management system in a simple manner in terms of data availability and the required computational resources. We conclude that the dynamic model presented in this paper represents an improvement relative to the reference data, and discuss the possibilities of further improving the proposed model.

Suggested Citation

  • Dolejš, Martin & Purchard, Jan & Javorčák, Adam, 2020. "Generating a spatial coverage plan for the emergency medical service on a regional scale: Empirical versus random forest modelling approach," Journal of Transport Geography, Elsevier, vol. 89(C).
  • Handle: RePEc:eee:jotrge:v:89:y:2020:i:c:s0966692320309662
    DOI: 10.1016/j.jtrangeo.2020.102889
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692320309662
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2020.102889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    2. McArthur, David Philip & Gregersen, Fredrik A. & Hagen, Terje P., 2014. "Modelling the cost of providing ambulance services," Journal of Transport Geography, Elsevier, vol. 34(C), pages 175-184.
    3. Chris Tofallis, 2015. "A better measure of relative prediction accuracy for model selection and model estimation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(8), pages 1352-1362, August.
    4. Subash Humagain & Roopak Sinha & Edmund Lai & Prakash Ranjitkar, 2020. "A systematic review of route optimisation and pre-emption methods for emergency vehicles," Transport Reviews, Taylor & Francis Journals, vol. 40(1), pages 35-53, January.
    5. Elizabeth Ty Wilde, 2013. "Do Emergency Medical System Response Times Matter For Health Outcomes?," Health Economics, John Wiley & Sons, Ltd., vol. 22(7), pages 790-806, July.
    6. Neutens, Tijs, 2015. "Accessibility, equity and health care: review and research directions for transport geographers," Journal of Transport Geography, Elsevier, vol. 43(C), pages 14-27.
    7. Chris Tofallis, 2015. "A better measure of relative prediction accuracy for model selection and model estimation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(3), pages 524-524, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    2. Rahman A. Prasojo & Karunika Diwyacitta & Suwarno & Harry Gumilang, 2017. "Transformer Paper Expected Life Estimation Using ANFIS Based on Oil Characteristics and Dissolved Gases (Case Study: Indonesian Transformers)," Energies, MDPI, vol. 10(8), pages 1-18, August.
    3. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    4. Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
    5. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    6. Marijana Zekić-Sušac & Marinela Knežević & Rudolf Scitovski, 2021. "Modeling the cost of energy in public sector buildings by linear regression and deep learning," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 307-322, March.
    7. Paolo Berta & Paolo Paruolo & Stefano Verzillo & Pietro Giorgio Lovaglio, 2020. "A bivariate prediction approach for adapting the health care system response to the spread of COVID-19," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
    8. Ming Yin & Feiya Lu & Xingxuan Zhuo & Wangzi Yao & Jialong Liu & Jijiao Jiang, 2024. "Prediction of daily tourism volume based on maximum correlation minimum redundancy feature selection and long short‐term memory network," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 344-365, March.
    9. Guo, Lin & Zhang, Ben, 2019. "Mining structural influence to analyze relationships in social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 301-309.
    10. Reuter-Oppermann, Melanie & Wolff, Clemens & Pumplun, Luisa, 2021. "Next Frontiers in Emergency Medical Services in Germany: Identifying Gaps between Academia and Practice," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 124665, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    11. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2022. "Accuracy indicators for evaluating retrospective performance of energy system models," Applied Energy, Elsevier, vol. 325(C).
    12. Warwick Smith & Anca M. Hanea & Mark A. Burgman, 2022. "Can Groups Improve Expert Economic and Financial Forecasts?," Forecasting, MDPI, vol. 4(3), pages 1-18, August.
    13. Fanwei Zhu & Wendong Xiao & Yao Yu & Ziyi Wang & Zulong Chen & Quan Lu & Zemin Liu & Minghui Wu & Shenghua Ni, 2022. "Modeling Price Elasticity for Occupancy Prediction in Hotel Dynamic Pricing," Papers 2208.03135, arXiv.org, revised Aug 2022.
    14. Theocharides, Spyros & Makrides, George & Livera, Andreas & Theristis, Marios & Kaimakis, Paris & Georghiou, George E., 2020. "Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing," Applied Energy, Elsevier, vol. 268(C).
    15. Desen Kirli & Maximilian Parzen & Aristides Kiprakis, 2021. "Impact of the COVID-19 Lockdown on the Electricity System of Great Britain: A Study on Energy Demand, Generation, Pricing and Grid Stability," Energies, MDPI, vol. 14(3), pages 1-25, January.
    16. Perazzini, Selene & Metulini, Rodolfo & Carpita, Maurizio, 2023. "Integration of flows and signals data from mobile phone network for statistical analyses of traffic in a flooding risk area," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    17. Puchalsky, Weslly & Ribeiro, Gabriel Trierweiler & da Veiga, Claudimar Pereira & Freire, Roberto Zanetti & Santos Coelho, Leandro dos, 2018. "Agribusiness time series forecasting using Wavelet neural networks and metaheuristic optimization: An analysis of the soybean sack price and perishable products demand," International Journal of Production Economics, Elsevier, vol. 203(C), pages 174-189.
    18. Colin Singleton & Peter Grindrod, 2021. "Forecasting for Battery Storage: Choosing the Error Metric," Energies, MDPI, vol. 14(19), pages 1-11, October.
    19. Croonenbroeck, Carsten & Hüttel, Silke, 2017. "Quantifying the economic efficiency impact of inaccurate renewable energy price forecasts," Energy, Elsevier, vol. 134(C), pages 767-774.
    20. Luca Di Persio & Nicola Fraccarolo, 2023. "Energy Consumption Forecasts by Gradient Boosting Regression Trees," Mathematics, MDPI, vol. 11(5), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:89:y:2020:i:c:s0966692320309662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.