IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v86y2020ics0966692320301137.html
   My bibliography  Save this article

An integrated approach to modeling the impact of floods on emergency services: A case study of Calgary, Alberta

Author

Listed:
  • Tsang, Michele
  • Scott, Darren M.

Abstract

Floods are becoming more frequent and the magnitude of direct consequences, relating to destruction of critical infrastructure and loss of life, has highlighted the importance of flood management. This study proposes a methodology for quantifying the impact of predicted and historic flood events on emergency services. The approach moves beyond simple flood inundation mapping by accounting for the relationship between flood depth and vehicular speed. A case study is presented for Calgary, Alberta, where the depths of a predicted 100-year flood and a historic 2013 flood event are modeled. The methodology applies geographic information systems to flood depth mapping, utilizing digital elevation models, flood extents, and hydrological data. Flood depths are then assigned to links comprising the road network, where the maximum vehicle speed is calculated as a function of the standing depth of water on a link. The flooded network is used to derive service areas for several types of emergency services (emergency medical services (EMS), fire, and police), following targeted response times. The results locate and quantify the residential and work populations that no longer meet the targeted response times. During both flood scenarios, EMS is found to have the greatest reduction in accessibility, with 23% and 47% of residents and workers, respectively, not served. Fire services are seen to be more resilient with only 3% and 9% of residents and workers, respectively, not served. The results for police services are similar to fire services. However, the former have a greater range of response times, meaning these areas represent those that are completely isolated during both flood events. Overall, the integrated methodology quantifies vulnerable populations on a partially degraded network, the results of which can be used to develop evacuation plans and emergency response strategies.

Suggested Citation

  • Tsang, Michele & Scott, Darren M., 2020. "An integrated approach to modeling the impact of floods on emergency services: A case study of Calgary, Alberta," Journal of Transport Geography, Elsevier, vol. 86(C).
  • Handle: RePEc:eee:jotrge:v:86:y:2020:i:c:s0966692320301137
    DOI: 10.1016/j.jtrangeo.2020.102774
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692320301137
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2020.102774?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew Smith & Paul D. Bates & Oliver Wing & Christopher Sampson & Niall Quinn & Jeff Neal, 2019. "New estimates of flood exposure in developing countries using high-resolution population data," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. Balijepalli, Chandra & Oppong, Olivia, 2014. "Measuring vulnerability of road network considering the extent of serviceability of critical road links in urban areas," Journal of Transport Geography, Elsevier, vol. 39(C), pages 145-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongbin Shi & Miao Zhou & Nana Kong & Yongling Zhang & Xin Li, 2023. "A Study on the Accessibility of the Emergency Medical Services for Urban Kindergartens and Nursing Homes Based on Urban Pluvial Flooding Scenarios," Sustainability, MDPI, vol. 15(13), pages 1-12, July.
    2. Boeing, Geoff & Ha, Jaehyun, 2024. "Resilient by Design: Simulating Street Network Disruptions across Every Urban Area in the World," SocArXiv tk93y, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bucar, Raif C.B. & Hayeri, Yeganeh M., 2020. "Quantitative assessment of the impacts of disruptive precipitation on surface transportation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    2. Mark Bawa Malgwi & Jorge Alberto Ramirez & Andreas Zischg & Markus Zimmermann & Stefan Schürmann & Margreth Keiler, 2021. "A method to reconstruct flood scenarios using field interviews and hydrodynamic modelling: application to the 2017 Suleja and Tafa, Nigeria flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1781-1805, September.
    3. Maria Carolina Rogelis, 2015. "Flood Risk in Road Networks," World Bank Publications - Reports 22980, The World Bank Group.
    4. Max Tesselaar & W. J. Wouter Botzen & Timothy Tiggeloven & Jeroen C. J. H. Aerts, 2023. "Flood insurance is a driver of population growth in European floodplains," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Katerina Tzavella & Alexander Fekete & Frank Fiedrich, 2018. "Opportunities provided by geographic information systems and volunteered geographic information for a timely emergency response during flood events in Cologne, Germany," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 29-57, April.
    6. Md. Monirul Islam & Shusuke Matsushita & Ryozo Noguchi & Tofael Ahamed, 2022. "A damage-based crop insurance system for flash flooding: a satellite remote sensing and econometric approach," Asia-Pacific Journal of Regional Science, Springer, vol. 6(1), pages 47-89, February.
    7. Seong Yun Cho & Heejun Chang, 2017. "Recent research approaches to urban flood vulnerability, 2006–2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 633-649, August.
    8. Drummond, John Amin & Malamud, Bruce D. & Mulligan, Joe & Bukachi, Vera & Talib, Manshur & Wandera, Amos & Pelling, Mark & Taylor, Faith E., 2023. "COVID-19 Interventions in an informal settlement: A spatial analysis of accessibility in Kibera, Kenya," Journal of Transport Geography, Elsevier, vol. 113(C).
    9. Maruyama Rentschler,Jun Erik & Avner,Paolo & Marconcini,Mattia & Su,Rui & Strano,Emanuele & Bernard,Louise Alice Karine & Riom,Capucine Anne Veronique & Hallegatte,Stephane, 2022. "Rapid Urban Growth in Flood Zones : Global Evidence since 1985," Policy Research Working Paper Series 10014, The World Bank.
    10. Allan Peñafiel Mera & Chandra Balijepalli, 2020. "Towards improving resilience of cities: an optimisation approach to minimising vulnerability to disruption due to natural disasters under budgetary constraints," Transportation, Springer, vol. 47(4), pages 1809-1842, August.
    11. Jie Fan & Baoyin Liu & Xiaodong Ming & Yong Sun & Lianjie Qin, 2022. "The amplification effect of unreasonable human behaviours on natural disasters," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-10, December.
    12. Amir Al Hamdi Redzuan & Rozana Zakaria & Aznah Nor Anuar & Eeydzah Aminudin & Norbazlan Mohd Yusof, 2022. "Road Network Vulnerability Based on Diversion Routes to Reconnect Disrupted Road Segments," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    13. Bikram Manandhar & Shenghui Cui & Lihong Wang & Sabita Shrestha, 2023. "Urban Flood Hazard Assessment and Management Practices in South Asia: A Review," Land, MDPI, vol. 12(3), pages 1-29, March.
    14. Banick, Robert & Heyns, Andries M. & Regmi, Suraj, 2021. "Evaluation of rural roads construction alternatives according to seasonal service accessibility improvement using a novel multi-modal cost-time model: A study in Nepal's remote and mountainous Karnali," Journal of Transport Geography, Elsevier, vol. 93(C).
    15. Fei Ma & Fei Liu & Kum Fai Yuen & Polin Lai & Qipeng Sun & Xiaodan Li, 2019. "Cascading Failures and Vulnerability Evolution in Bus–Metro Complex Bilayer Networks under Rainstorm Weather Conditions," IJERPH, MDPI, vol. 16(3), pages 1-30, January.
    16. Yamada, Takashi, 2022. "Generalizing the probability of reaching a destination in case of route blockage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    17. Ahmad Mohamad El-Maissi & Sotirios A. Argyroudis & Fadzli Mohamed Nazri, 2020. "Seismic Vulnerability Assessment Methodologies for Roadway Assets and Networks: A State-of-the-Art Review," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
    18. Eric Tate & Md Asif Rahman & Christopher T. Emrich & Christopher C. Sampson, 2021. "Flood exposure and social vulnerability in the United States," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 435-457, March.
    19. Tao Ji & Yanhong Yao & Yue Dou & Shejun Deng & Shijun Yu & Yunqiang Zhu & Huajun Liao, 2022. "The Impact of Climate Change on Urban Transportation Resilience to Compound Extreme Events," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    20. Agostino Torti & Marika Arena & Giovanni Azzone & Piercesare Secchi & Simone Vantini, 2022. "Bridge closure in the road network of Lombardy: a spatio-temporal analysis of the socio-economic impacts," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 901-923, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:86:y:2020:i:c:s0966692320301137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.