IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v108y2021i2d10.1007_s11069-021-04756-z.html
   My bibliography  Save this article

A method to reconstruct flood scenarios using field interviews and hydrodynamic modelling: application to the 2017 Suleja and Tafa, Nigeria flood

Author

Listed:
  • Mark Bawa Malgwi

    (University of Bern
    University of Bern)

  • Jorge Alberto Ramirez

    (University of Bern
    University of Bern)

  • Andreas Zischg

    (University of Bern
    University of Bern
    University of Bern)

  • Markus Zimmermann

    (University of Bern
    University of Bern)

  • Stefan Schürmann

    (University of Bern
    University of Bern
    University of Bern)

  • Margreth Keiler

    (University of Bern
    University of Bern
    University of Bern)

Abstract

The scarcity of model input and calibration data has limited efforts in reconstructing scenarios of past floods in many regions globally. Recently, the number of studies that use distributed post-flood observation data collected throughout flood-affected communities (e.g. face-to-face interviews) are increasing. However, a systematic method that applies such data for hydrodynamic modelling of past floods in locations without hydrological data is lacking. In this study, we developed a method for reconstructing plausible scenarios of past flood events in data-scarce regions by applying flood observation data collected through field interviews to a hydrodynamic model (CAESAR-Lisflood). We tested the method using 300 spatially distributed flood depths and duration data collected using questionnaires on five river reaches after the 2017 flood event in Suleja and Tafa region, Nigeria. A stepwise process that aims to minimize the error between modelled and observed flood depth and duration at the locations of interviewed households was implemented. Results from the reconstructed flood depth scenario produced an error of ± 0.61 m for all observed and modelled locations and lie in the range of error produced by studies using comparable hydrodynamic models. The study demonstrates the potential of utilizing interview data for hydrodynamic modelling applications in data-scarce regions to support regional flood risk assessment. Furthermore, the method can provide flow depths and durations at houses without observations, which is useful input data for physical vulnerability assessment to complement disaster risk reduction efforts.

Suggested Citation

  • Mark Bawa Malgwi & Jorge Alberto Ramirez & Andreas Zischg & Markus Zimmermann & Stefan Schürmann & Margreth Keiler, 2021. "A method to reconstruct flood scenarios using field interviews and hydrodynamic modelling: application to the 2017 Suleja and Tafa, Nigeria flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1781-1805, September.
  • Handle: RePEc:spr:nathaz:v:108:y:2021:i:2:d:10.1007_s11069-021-04756-z
    DOI: 10.1007/s11069-021-04756-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04756-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04756-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joy Sanyal & Patrice Carbonneau & Alexander Densmore, 2013. "Hydraulic routing of extreme floods in a large ungauged river and the estimation of associated uncertainties: a case study of the Damodar River, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1153-1177, March.
    2. María Bermúdez & Andreas Paul Zischg, 2018. "Sensitivity of flood loss estimates to building representation and flow depth attribution methods in micro-scale flood modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1633-1648, July.
    3. Andrew Smith & Paul D. Bates & Oliver Wing & Christopher Sampson & Niall Quinn & Jeff Neal, 2019. "New estimates of flood exposure in developing countries using high-resolution population data," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vineela Nandam & P. L. Patel, 2024. "On the role of digital terrain topography and land use dynamics in flood hazard assessment of urban floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11877-11902, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Max Tesselaar & W. J. Wouter Botzen & Timothy Tiggeloven & Jeroen C. J. H. Aerts, 2023. "Flood insurance is a driver of population growth in European floodplains," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Md. Monirul Islam & Shusuke Matsushita & Ryozo Noguchi & Tofael Ahamed, 2022. "A damage-based crop insurance system for flash flooding: a satellite remote sensing and econometric approach," Asia-Pacific Journal of Regional Science, Springer, vol. 6(1), pages 47-89, February.
    3. Gianna Ida Festa & Luigi Guerriero & Mariano Focareta & Giuseppe Meoli & Silvana Revellino & Francesco Maria Guadagno & Paola Revellino, 2022. "Calculating Economic Flood Damage through Microscale Risk Maps and Data Generalization: A Pilot Study in Southern Italy," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    4. Maruyama Rentschler,Jun Erik & Avner,Paolo & Marconcini,Mattia & Su,Rui & Strano,Emanuele & Bernard,Louise Alice Karine & Riom,Capucine Anne Veronique & Hallegatte,Stephane, 2022. "Rapid Urban Growth in Flood Zones : Global Evidence since 1985," Policy Research Working Paper Series 10014, The World Bank.
    5. Jie Fan & Baoyin Liu & Xiaodong Ming & Yong Sun & Lianjie Qin, 2022. "The amplification effect of unreasonable human behaviours on natural disasters," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-10, December.
    6. Xinmeng Shan & Jiahong Wen & Min Zhang & Luyang Wang & Qian Ke & Weijiang Li & Shiqiang Du & Yong Shi & Kun Chen & Banggu Liao & Xiande Li & Hui Xu, 2019. "Scenario-Based Extreme Flood Risk of Residential Buildings and Household Properties in Shanghai," Sustainability, MDPI, vol. 11(11), pages 1-18, June.
    7. Bikram Manandhar & Shenghui Cui & Lihong Wang & Sabita Shrestha, 2023. "Urban Flood Hazard Assessment and Management Practices in South Asia: A Review," Land, MDPI, vol. 12(3), pages 1-29, March.
    8. Banick, Robert & Heyns, Andries M. & Regmi, Suraj, 2021. "Evaluation of rural roads construction alternatives according to seasonal service accessibility improvement using a novel multi-modal cost-time model: A study in Nepal's remote and mountainous Karnali," Journal of Transport Geography, Elsevier, vol. 93(C).
    9. Tsang, Michele & Scott, Darren M., 2020. "An integrated approach to modeling the impact of floods on emergency services: A case study of Calgary, Alberta," Journal of Transport Geography, Elsevier, vol. 86(C).
    10. Eric Tate & Md Asif Rahman & Christopher T. Emrich & Christopher C. Sampson, 2021. "Flood exposure and social vulnerability in the United States," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 435-457, March.
    11. Andrés Fortunato & Helmut Herwartz & Ramón E. López & Eugenio Figueroa B., 2022. "Carbon dioxide atmospheric concentration and hydrometeorological disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 57-74, May.
    12. Sandipan Ghosh & Sanat Guchhait, 2014. "Hydrogeomorphic variability due to dam constructions and emerging problems: a case study of Damodar River, West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(3), pages 769-796, June.
    13. Chaowei Xu & Hao Fu & Jiashuai Yang & Lingyue Wang, 2022. "Assessment of the Relationship between Land Use and Flood Risk Based on a Coupled Hydrological–Hydraulic Model: A Case Study of Zhaojue River Basin in Southwestern China," Land, MDPI, vol. 11(8), pages 1-24, July.
    14. Beth Tellman & Cody Schank & Bessie Schwarz & Peter D. Howe & Alex de Sherbinin, 2020. "Using Disaster Outcomes to Validate Components of Social Vulnerability to Floods: Flood Deaths and Property Damage across the USA," Sustainability, MDPI, vol. 12(15), pages 1-28, July.
    15. Sufia Rehman & Mehebub Sahana & Haoyuan Hong & Haroon Sajjad & Baharin Bin Ahmed, 2019. "A systematic review on approaches and methods used for flood vulnerability assessment: framework for future research," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 975-998, March.
    16. Cascade Tuholske & Andrea E. Gaughan & Alessandro Sorichetta & Alex de Sherbinin & Agathe Bucherie & Carolynne Hultquist & Forrest Stevens & Andrew Kruczkiewicz & Charles Huyck & Greg Yetman, 2021. "Implications for Tracking SDG Indicator Metrics with Gridded Population Data," Sustainability, MDPI, vol. 13(13), pages 1-21, June.
    17. Rafael Paes & João Brandão, 2013. "Flood Control in the Cuiabá River Basin, Brazil, with Multipurpose Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 3929-3944, September.
    18. Zhenjie Liu & Jun Li & Haonan Chen & Lizhe Wang & Jun Yang & Antonio Plaza, 2024. "Prediction of changes in war-induced population and CO2 emissions in Ukraine using social media," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    19. Natthachet Tangdamrongsub & Chalita Forgotson & Chandana Gangodagamage & Joshua Forgotson, 2021. "The analysis of using satellite soil moisture observations for flood detection, evaluating over the Thailand’s Great Flood of 2011," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2879-2904, September.
    20. Jun Rentschler & Melda Salhab & Bramka Arga Jafino, 2022. "Flood exposure and poverty in 188 countries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:108:y:2021:i:2:d:10.1007_s11069-021-04756-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.