IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v82y2020ics0966692319304168.html
   My bibliography  Save this article

Modelling growth principles of metropolitan public transport networks

Author

Listed:
  • Cats, Oded
  • Vermeulen, Alex
  • Warnier, Martijn
  • van Lint, Hans

Abstract

The development of metropolitan public transport networks often involves choosing between investing in extending radial lines or constructing ring connections. While the former enlarges network coverage the latter enhances network connectivity and reduces the need to perform detours. Moreover, investments might be better directed at increasing the capacity of already existing infrastructure. In this study we address the following question: how do transport networks in metropolitan areas evolve over time and how can we effectively model this growth as function of demand and cost function? The goal of this study is to determine the fundamental relations between population distribution, modal costs on the prevailing network structure and its evolution. The approach taken in this study offers a theoretical contribution to the field of transport network growth by combining principles from several research streams: transport geography, economics of network growth and network science. We propose an iterative investment model network analysis framework. The results of the network growth experiments manifest an overall trend in network growth with an early phase of expansion of the network, followed by a period of intensification manifested in capacity increments and finally adding some links that contribute to its densification. Furthermore, our findings suggest that bus networks include more ring-radial connections than Light Rail Train and Metro networks which are more concentrated on radial connections.

Suggested Citation

  • Cats, Oded & Vermeulen, Alex & Warnier, Martijn & van Lint, Hans, 2020. "Modelling growth principles of metropolitan public transport networks," Journal of Transport Geography, Elsevier, vol. 82(C).
  • Handle: RePEc:eee:jotrge:v:82:y:2020:i:c:s0966692319304168
    DOI: 10.1016/j.jtrangeo.2019.102567
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692319304168
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2019.102567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, X. & Miller-Hooks, E. & Denny, K., 2015. "Assessing the role of network topology in transportation network resilience," Journal of Transport Geography, Elsevier, vol. 46(C), pages 35-45.
    2. Badia, Hugo & Estrada, Miquel & Robusté, Francesc, 2014. "Competitive transit network design in cities with radial street patterns," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 161-181.
    3. Feng Xie & David Levinson, 2009. "Modeling the Growth of Transportation Networks: A Comprehensive Review," Networks and Spatial Economics, Springer, vol. 9(3), pages 291-307, September.
    4. Cats, Oded, 2017. "Topological evolution of a metropolitan rail transport network: The case of Stockholm," Journal of Transport Geography, Elsevier, vol. 62(C), pages 172-183.
    5. Vaughan, Rodney, 1986. "Optimum polar networks for an urban bus system with a many-to-many travel demand," Transportation Research Part B: Methodological, Elsevier, vol. 20(3), pages 215-224, June.
    6. Tirachini, Alejandro & Hensher, David A. & Jara-Díaz, Sergio R., 2010. "Comparing operator and users costs of light rail, heavy rail and bus rapid transit over a radial public transport network," Research in Transportation Economics, Elsevier, vol. 29(1), pages 231-242.
    7. Chen, Haoyu & Gu, Weihua & Cassidy, Michael J. & Daganzo, Carlos F., 2015. "Optimal transit service atop ring-radial and grid street networks: A continuum approximation design method and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 755-774.
    8. Wirasinghe, S.C. & Kattan, Lina, 2016. "Long-term planning for ring-radial urban rail transit networksAuthor-Name: Saidi, Saeid," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 128-146.
    9. César Ducruet & Laurent Beauguitte, 2014. "Spatial Science and Network Science: Review and Outcomes of a Complex Relationship," Networks and Spatial Economics, Springer, vol. 14(3), pages 297-316, December.
    10. Gilbert Laporte & Juan Mesa & Francisco Ortega, 1997. "Assessing the efficiency of rapid transit configurations," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 5(1), pages 95-104, June.
    11. César Ducruet & Laurent Beauguitte, 2014. "Network science and spatial science : Review and outcomes of a complex relationship," Post-Print hal-03246947, HAL.
    12. Boyd, J. Hayden & Asher, Norman J. & Wetzler, Elliot S., 1978. "Nontechnological innovation in urban transit , : A comparison of some alternatives," Journal of Urban Economics, Elsevier, vol. 5(1), pages 1-20, January.
    13. Dupuy, Gabriel, 2013. "Network geometry and the urban railway system: the potential benefits to geographers of harnessing inputs from “naive” outsiders," Journal of Transport Geography, Elsevier, vol. 33(C), pages 85-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weckström, Christoffer & Mladenović, Miloš N. & Kujala, Rainer & Saramäki, Jari, 2021. "Navigability assessment of large-scale redesigns in nine public transport networks: Open timetable data approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 212-229.
    2. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    3. Zhiru Wang & Wubin Ma & Albert Chan, 2020. "Exploring the Relationships between the Topological Characteristics of Subway Networks and Service Disruption Impact," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    4. Li, Xijing & Zhang, Mengmeng & Wang, Jionghua, 2022. "The spatio-temporal relationship between land use and population distribution around new intercity railway stations: A case study on the Pearl River Delta region, China," Journal of Transport Geography, Elsevier, vol. 98(C).
    5. Cats, Oded & Birch, Nigel, 2021. "Multi-modal network evolution in polycentric regions," Journal of Transport Geography, Elsevier, vol. 96(C).
    6. Jean-Philippe Meloche & Vincent Trotignon & François Vaillancourt, 2021. "Densification ou prolongement des réseaux de transport structurants ? Une recension des écrits sur les coûts et les bénéfices attendus," CIRANO Project Reports 2020rp-28, CIRANO.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrés Fielbaum & Sergio Jara-Diaz & Antonio Gschwender, 2017. "A Parametric Description of Cities for the Normative Analysis of Transport Systems," Networks and Spatial Economics, Springer, vol. 17(2), pages 343-365, June.
    2. Cats, Oded, 2017. "Topological evolution of a metropolitan rail transport network: The case of Stockholm," Journal of Transport Geography, Elsevier, vol. 62(C), pages 172-183.
    3. Luo, Sida & Nie, Yu (Marco), 2020. "Paired-line hybrid transit design considering spatial heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 320-339.
    4. Amirgholy, Mahyar & Shahabi, Mehrdad & Gao, H. Oliver, 2017. "Optimal design of sustainable transit systems in congested urban networks: A macroscopic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 261-285.
    5. Hugo Badia, 2020. "Comparison of Bus Network Structures in Face of Urban Dispersion for a Ring-Radial City," Networks and Spatial Economics, Springer, vol. 20(1), pages 233-271, March.
    6. Badia, Hugo & Estrada, Miquel & Robusté, Francesc, 2016. "Bus network structure and mobility pattern: A monocentric analytical approach on a grid street layout," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 37-56.
    7. Moccia, Luigi & Laporte, Gilbert, 2016. "Improved models for technology choice in a transit corridor with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 245-270.
    8. Masing, Berenike & Lindner, Niels & Borndörfer, Ralf, 2022. "The price of symmetric line plans in the Parametric City," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 419-443.
    9. Asya Natapov & Daniel Czamanski & Dafna Fisher-Gewirtzman, 2018. "A Network Approach to Link Visibility and Urban Activity Location," Networks and Spatial Economics, Springer, vol. 18(3), pages 555-575, September.
    10. Fan, Wenbo & Mei, Yu & Gu, Weihua, 2018. "Optimal design of intersecting bimodal transit networks in a grid city," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 203-226.
    11. Nuria Gallego & José L. Zofío, 2018. "Trade Openness, Transport Networks and the Spatial Location of Economic Activity," Networks and Spatial Economics, Springer, vol. 18(1), pages 205-236, March.
    12. Fangxia Zhao & Jianjun Wu & Huijun Sun & Ziyou Gao & Ronghui Liu, 2016. "Population-driven Urban Road Evolution Dynamic Model," Networks and Spatial Economics, Springer, vol. 16(4), pages 997-1018, December.
    13. Nicanor García Álvarez & Belarmino Adenso-Díaz & Laura Calzada-Infante, 2021. "Maritime Traffic as a Complex Network: a Systematic Review," Networks and Spatial Economics, Springer, vol. 21(2), pages 387-417, June.
    14. Li, Zhi-Chun & Wang, Ya-Dong, 2018. "Analysis of multimodal two-dimensional urban system equilibrium for cordon toll pricing and bus service design," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 244-265.
    15. Ding, Rui & Ujang, Norsidah & Hamid, Hussain bin & Manan, Mohd Shahrudin Abd & He, Yuou & Li, Rong & Wu, Jianjun, 2018. "Detecting the urban traffic network structure dynamics through the growth and analysis of multi-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 800-817.
    16. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    17. Rui Ding, 2019. "The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    18. Cats, Oded & Birch, Nigel, 2021. "Multi-modal network evolution in polycentric regions," Journal of Transport Geography, Elsevier, vol. 96(C).
    19. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2016. "Optimal public transport networks for a general urban structure," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 298-313.
    20. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2021. "Lines spacing and scale economies in the strategic design of transit systems in a parametric city," Research in Transportation Economics, Elsevier, vol. 90(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:82:y:2020:i:c:s0966692319304168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.