IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v34y2014icp274-281.html
   My bibliography  Save this article

Network-based spatial interpolation of commuting trajectories: application of a university commuting management project in Kyoto, Japan

Author

Listed:
  • Hanaoka, Kazumasa
  • Nakaya, Tomoki
  • Yano, Keiji
  • Inoue, Shigeru

Abstract

This study presents an application of network-based spatial interpolation of student commuting trajectories from a series of origin–destination trip datasets. In particular, we incorporated multimodal public transportation networks, including bus networks, to estimate the student commuting routes. The student samples for this study were collected from an online travel diary survey conducted by Ritsumeikan University in Kyoto, Japan. The ArcGIS Network Analyst was used to construct spatial network datasets and reconstruct trajectories from the origin–destination trip dataset. In addition, line densities of estimated trajectories were calculated and displayed on maps for geovisualization. These maps helped us understand the precise locations of congestion and spatial patterns of student commuting, unlike linear representations of people’s movements that connect origins and destinations. Our study also showed that estimated trajectories can simulate quantitative impacts on travel time by promoting walking or the use of public transportation.

Suggested Citation

  • Hanaoka, Kazumasa & Nakaya, Tomoki & Yano, Keiji & Inoue, Shigeru, 2014. "Network-based spatial interpolation of commuting trajectories: application of a university commuting management project in Kyoto, Japan," Journal of Transport Geography, Elsevier, vol. 34(C), pages 274-281.
  • Handle: RePEc:eee:jotrge:v:34:y:2014:i:c:p:274-281
    DOI: 10.1016/j.jtrangeo.2013.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692313001750
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2013.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ipek Sener & Naveen Eluru & Chandra Bhat, 2009. "An analysis of bicycle route choice preferences in Texas, US," Transportation, Springer, vol. 36(5), pages 511-539, September.
    2. Macharis, Cathy & Pekin, Ethem, 2009. "Assessing policy measures for the stimulation of intermodal transport: a GIS-based policy analysis," Journal of Transport Geography, Elsevier, vol. 17(6), pages 500-508.
    3. Shannon, Tya & Giles-Corti, Billie & Pikora, Terri & Bulsara, Max & Shilton, Trevor & Bull, Fiona, 2006. "Active commuting in a university setting: Assessing commuting habits and potential for modal change," Transport Policy, Elsevier, vol. 13(3), pages 240-253, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Polina Lemenkova & Olivier Debeir, 2023. "Quantitative Morphometric 3D Terrain Analysis of Japan Using Scripts of GMT and R," Land, MDPI, vol. 12(1), pages 1-29, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Motoaki, Yutaka & Daziano, Ricardo A., 2015. "A hybrid-choice latent-class model for the analysis of the effects of weather on cycling demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 217-230.
    2. Meghan Winters & Gavin Davidson & Diana Kao & Kay Teschke, 2011. "Motivators and deterrents of bicycling: comparing influences on decisions to ride," Transportation, Springer, vol. 38(1), pages 153-168, January.
    3. Stefan Flügel & Nina Hulleberg & Aslak Fyhri & Christian Weber & Gretar Ævarsson, 2019. "Empirical speed models for cycling in the Oslo road network," Transportation, Springer, vol. 46(4), pages 1395-1419, August.
    4. Götschi, Thomas & Hintermann, Beat, 2013. "Valuation of public investment to support bicycling (FV-09)," Working papers 2013/02, Faculty of Business and Economics - University of Basel.
    5. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
    6. Selima Sultana & Hyojin Kim & Nastaran Pourebrahim & Firoozeh Karimi, 2018. "Geographical Assessment of Low-Carbon Transportation Modes: A Case Study from a Commuter University," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    7. Rupi, Federico & Freo, Marzia & Poliziani, Cristian & Postorino, Maria Nadia & Schweizer, Joerg, 2023. "Analysis of gender-specific bicycle route choices using revealed preference surveys based on GPS traces," Transport Policy, Elsevier, vol. 133(C), pages 1-14.
    8. Zhou, Jiangping, 2012. "Sustainable commute in a car-dominant city: Factors affecting alternative mode choices among university students," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1013-1029.
    9. Wanke, Peter & Barros, C.P. & Figueiredo, Otávio, 2016. "Efficiency and productive slacks in urban transportation modes: A two-stage SDEA-Beta Regression approach," Utilities Policy, Elsevier, vol. 41(C), pages 31-39.
    10. Ding, Hongliang & Lu, Yuhuan & Sze, N.N. & Li, Haojie, 2022. "Effect of dockless bike-sharing scheme on the demand for London Cycle Hire at the disaggregate level using a deep learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 150-163.
    11. Meyer, Niclas & Horvat, Djerdj & Hitzler, Matthias & Doll, Claus, 2018. "Business models for freight and logistics services," Working Papers "Sustainability and Innovation" S08/2018, Fraunhofer Institute for Systems and Innovation Research (ISI).
    12. Allen, Jeff & Farber, Steven, 2018. "An Examination of Time-Use and Transportation Barriers to On-Campus Participation of University Students," SocArXiv q652t, Center for Open Science.
    13. Ali Al-Ramini & Mohammad A Takallou & Daniel P Piatkowski & Fadi Alsaleem, 2022. "Quantifying changes in bicycle volumes using crowdsourced data," Environment and Planning B, , vol. 49(6), pages 1612-1630, July.
    14. Khaled Assi & Uneb Gazder & Ibrahim Al-Sghan & Imran Reza & Abdullah Almubarak, 2020. "A Nested Ensemble Approach with ANNs to Investigate the Effect of Socioeconomic Attributes on Active Commuting of University Students," IJERPH, MDPI, vol. 17(10), pages 1-17, May.
    15. Meister, Adrian & Felder, Matteo & Schmid, Basil & Axhausen, Kay W., 2023. "Route choice modeling for cyclists on urban networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    16. Poudel, Niranjan & Singleton, Patrick A., 2022. "Preferences for roundabout attributes among US bicyclists: A discrete choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 316-329.
    17. Lei Kang & Jon Fricker, 2013. "Bicyclist commuters’ choice of on-street versus off-street route segments," Transportation, Springer, vol. 40(5), pages 887-902, September.
    18. Orvin, Muntahith Mehadil & Fatmi, Mahmudur Rahman & Chowdhury, Subeh, 2021. "Taking another look at cycling demand modeling: A comparison between two cities in Canada and New Zealand," Journal of Transport Geography, Elsevier, vol. 97(C).
    19. Roberto Battistini & Luca Mantecchini & Maria Nadia Postorino, 2020. "Users’ Acceptance of Connected and Automated Shuttles for Tourism Purposes: A Survey Study," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    20. Aliaksandr Malokin & Giovanni Circella & Patricia L. Mokhtarian, 2021. "Do millennials value travel time differently because of productive multitasking? A revealed-preference study of Northern California commuters," Transportation, Springer, vol. 48(5), pages 2787-2823, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:34:y:2014:i:c:p:274-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.