IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v22y2012icp285-287.html
   My bibliography  Save this article

High-speed rail, the knowledge economy and the next growth wave

Author

Listed:
  • Tierney, Sean

Abstract

► High-speed rail is the next logical transportation infrastructure project. ► The knowledge economy demands an expanded, yet highly connected urban landscape. ► High-speed rail offers energy diversity for our transportation system and an investment in our economic competitiveness.

Suggested Citation

  • Tierney, Sean, 2012. "High-speed rail, the knowledge economy and the next growth wave," Journal of Transport Geography, Elsevier, vol. 22(C), pages 285-287.
  • Handle: RePEc:eee:jotrge:v:22:y:2012:i:c:p:285-287
    DOI: 10.1016/j.jtrangeo.2012.01.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692312000312
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2012.01.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Campos, Javier & de Rus, Ginés, 2009. "Some stylized facts about high-speed rail: A review of HSR experiences around the world," Transport Policy, Elsevier, vol. 16(1), pages 19-28, January.
    2. Audretsch, David B, 1998. "Agglomeration and the Location of Innovative Activity," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 14(2), pages 18-29, Summer.
    3. Chen, Chia-Lin & Hall, Peter, 2011. "The impacts of high-speed trains on British economic geography: a study of the UK’s InterCity 125/225 and its effects," Journal of Transport Geography, Elsevier, vol. 19(4), pages 689-704.
    4. Lakshmanan, T.R., 2011. "The broader economic consequences of transport infrastructure investments," Journal of Transport Geography, Elsevier, vol. 19(1), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhangfeng Yao & Kunhui Ye & Liang Xiao & Xiaowei Wang, 2021. "Radiation Effect of Urban Agglomeration’s Transportation Network: Evidence from Chengdu–Chongqing Urban Agglomeration, China," Land, MDPI, vol. 10(5), pages 1-21, May.
    2. Meng, Xuechen & Lin, Shanlang & Zhu, Xiaochuan, 2018. "The resource redistribution effect of high-speed rail stations on the economic growth of neighbouring regions: Evidence from China," Transport Policy, Elsevier, vol. 68(C), pages 178-191.
    3. Juncheng Li & Jun Hu & Lu Yang, 2021. "Can Trade Facilitation Prevent the Formation of Zombie Firms? Evidence from the China Railway Express," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 29(1), pages 130-151, January.
    4. Culver, Gregg, 2016. "End of the line: The spatial framing of high-speed rail in Wisconsin," Journal of Transport Geography, Elsevier, vol. 51(C), pages 70-76.
    5. Yu Chen & Yuandi Wang & Ruifeng Hu, 2020. "Sustainability by High–Speed Rail: The Reduction Mechanisms of Transportation Infrastructure on Haze Pollution," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    6. Dongshan Ma & Shengqiang Zhang & Jiayu Zhao, 2022. "The High-Speed Railway Opening and Audit Fees: Evidence from China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    7. Yanan Jin & Guoli Ou, 2023. "The Impacts of High-Speed Rail on Producer Service Industry Agglomeration: Evidence from China’s Yangtze River Delta Urban Agglomeration," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    8. Basse, Reine Maria, 2013. "A constrained cellular automata model to simulate the potential effects of high-speed train stations on land-use dynamics in trans-border regions," Journal of Transport Geography, Elsevier, vol. 32(C), pages 23-37.
    9. Shanlang Lin & Prithvi Raj Dhakal & Zhaowei Wu, 2021. "The Impact of High-Speed Railway on China’s Regional Economic Growth Based on the Perspective of Regional Heterogeneity of Quality of Place," Sustainability, MDPI, vol. 13(9), pages 1-24, April.
    10. Shaw, Shih-Lung & Fang, Zhixiang & Lu, Shiwei & Tao, Ran, 2014. "Impacts of high speed rail on railroad network accessibility in China," Journal of Transport Geography, Elsevier, vol. 40(C), pages 112-122.
    11. Yu, Miao & Fan, Wei, 2018. "Accessibility impact of future high speed rail corridor on the piedmont Atlantic megaregion," Journal of Transport Geography, Elsevier, vol. 73(C), pages 1-12.
    12. Xiaomin Wang & Jingyu Liu & Wenxin Zhang, 2022. "Impact of High-Speed Rail on Spatial Structure in Prefecture-Level Cities: Evidence from the Central Plains Urban Agglomeration, China," Sustainability, MDPI, vol. 14(23), pages 1-17, December.
    13. Zhang, Wenxin & Nian, Peihao & Lyu, Guowei, 2016. "A multimodal approach to assessing accessibility of a high-speed railway station," Journal of Transport Geography, Elsevier, vol. 54(C), pages 91-101.
    14. Hanming Fang & Long Wang & Yang Yang, 2020. "Competition and Quality: Evidence from High-Speed Railways and Airlines," PIER Working Paper Archive 20-022, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    15. Shao, Shuai & Tian, Zhihua & Yang, Lili, 2017. "High speed rail and urban service industry agglomeration: Evidence from China's Yangtze River Delta region," Journal of Transport Geography, Elsevier, vol. 64(C), pages 174-183.
    16. Rong Wang & Li Ye & Liwen Chen, 2019. "The Impact of High-Speed Rail on Housing Prices: Evidence from China’s Prefecture-Level Cities," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    17. Hu, Xinlei & Huang, Jie & Shi, Feng, 2019. "Circuity in China's high-speed-rail network," Journal of Transport Geography, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yaoyu & Liu, Jin & Wang, Bo, 2022. "The impact of High-Speed Rails on urban expansion: An investigation using an SDID with dynamic effects method," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    2. Shen, Yu & de Abreu e Silva, João & Martínez, Luis Miguel, 2014. "Assessing High-Speed Rail’s impacts on land cover change in large urban areas based on spatial mixed logit methods: a case study of Madrid Atocha railway station from 1990 to 2006," Journal of Transport Geography, Elsevier, vol. 41(C), pages 184-196.
    3. Chou, Jui-Sheng & Chien, Ya-Ling & Nguyen, Ngoc-Mai & Truong, Dinh-Nhat, 2018. "Pricing policy of floating ticket fare for riding high speed rail based on time-space compression," Transport Policy, Elsevier, vol. 69(C), pages 179-192.
    4. Chandra, Shailesh & Vadali, Sharada, 2014. "Evaluating accessibility impacts of the proposed America 2050 high-speed rail corridor for the Appalachian Region," Journal of Transport Geography, Elsevier, vol. 37(C), pages 28-46.
    5. Chen, Zhenhua, 2023. "Socioeconomic Impacts of high-speed rail: A bibliometric analysis," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    6. Angela Stefania Bergantino & Claudia Capozza & Ada Spiru, 2023. "Transport endowment, knowledge spillovers and firm performance in emerging economies," Small Business Economics, Springer, vol. 61(4), pages 1515-1541, December.
    7. Chen, Chia-Lin & Hall, Peter, 2011. "The impacts of high-speed trains on British economic geography: a study of the UK’s InterCity 125/225 and its effects," Journal of Transport Geography, Elsevier, vol. 19(4), pages 689-704.
    8. Ortega, Emilio & López, Elena & Monzón, Andrés, 2014. "Territorial cohesion impacts of high-speed rail under different zoning systems," Journal of Transport Geography, Elsevier, vol. 34(C), pages 16-24.
    9. Yu, Miao & Fan, Wei, 2018. "Accessibility impact of future high speed rail corridor on the piedmont Atlantic megaregion," Journal of Transport Geography, Elsevier, vol. 73(C), pages 1-12.
    10. Davenport, Sally, 2005. "Exploring the role of proximity in SME knowledge-acquisition," Research Policy, Elsevier, vol. 34(5), pages 683-701, June.
    11. Philip Cooke, 2002. "Biotechnology Clusters as Regional, Sectoral Innovation Systems," International Regional Science Review, , vol. 25(1), pages 8-37, January.
    12. JOrge Alonso Lotero Contreras & Sergio Restrepo & Liliana Yaned Franco Vásquez, 2000. "Modelos de desarrollo y convergencia interregional de la productividad industrial en Colombia," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 52, pages 51-85, Enero Jun.
    13. Greenaway, David & Görg, Holger, 2002. "Much Ado About Nothing? Do Domestic Firms Really Benefit from Foreign Investment?," CEPR Discussion Papers 3485, C.E.P.R. Discussion Papers.
    14. Erik Stam & Roy Thurik & Peter van der Zwan, 2010. "Entrepreneurial exit in real and imagined markets," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 19(4), pages 1109-1139, August.
    15. Alberto Albahari & Magnus Klofsten & Juan Carlos Rubio-Romero, 2019. "Science and Technology Parks: a study of value creation for park tenants," The Journal of Technology Transfer, Springer, vol. 44(4), pages 1256-1272, August.
    16. Franz Tödtling & Michaela Trippl, 2013. "Innovation and Knowledge Links in Metropolitan Regions: The Case of Vienna," Advances in Spatial Science, in: Johan Klaesson & Börje Johansson & Charlie Karlsson (ed.), Metropolitan Regions, edition 127, chapter 0, pages 451-472, Springer.
    17. Rodríguez-Pose, Andrés & Zhang, Min, 2020. "The cost of weak institutions for innovation in China," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    18. Mishra, Gouri S. & Kyle, Page & Teter, Jacob & Morrison, Geoffrey M. & Kim, Son H. & Yeh, Sonia, 2013. "Transportation Module of Global Change Assessment Model (GCAM): Model Documentation- Version 1.0," Institute of Transportation Studies, Working Paper Series qt8nk2c96d, Institute of Transportation Studies, UC Davis.
    19. Jaan Masso & Amaresh K Tiwari, 2021. "Productivity Implications Of R&D, Innovation And Capital Accumulation For Incumbents And Entrants: The Case Of Estonia," University of Tartu - Faculty of Economics and Business Administration Working Paper Series 130, Faculty of Economics and Business Administration, University of Tartu (Estonia).
    20. Wessel, Jan, 2019. "Evaluating the transport-mode-specific trade effects of different transport infrastructure types," Transport Policy, Elsevier, vol. 78(C), pages 42-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:22:y:2012:i:c:p:285-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.