IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v41y2007i1p19-40.html
   My bibliography  Save this article

Transit competitiveness in polycentric metropolitan regions

Author

Listed:
  • Casello, Jeffrey M.

Abstract

This paper analyzes the potential to, and impacts of, increasing transit modal split in a polycentric metropolitan area - the Philadelphia, Pennsylvania region. Potential transit riders are preselected as those travelers whose trips begin and end in areas with transit-supportive land uses, defined as "activity centers," areas of high-density employment and trip attraction. A multimodal traffic assignment model is developed and solved to quantify the generalized cost of travel by transit services and private automobile under (user) equilibrium conditions. The model predicts transit modal split by identifying the origin-destination pairs for which transit offers lower generalized cost. For those origin-destination pairs for which transit does not offer the lowest generalized cost, I compute a transit competitiveness measure, the ratio of transit generalized cost to auto generalized cost. The model is first formulated and solved for existing transit service and regional pricing schemes. Next, various transit incentives (travel time or fare reductions, increased service) and auto disincentives (higher out of pocket expenses) are proposed and their impacts on individual travel choices and system performance are quantified. The results suggest that a coordinated policy of improved transit service and some auto disincentives is necessary to achieve greater modal split and improved system efficiency in the region. Further, the research finds that two levels of coordinated transit service, between and within activity centers, are necessary to realize the greatest improvements in system performance.

Suggested Citation

  • Casello, Jeffrey M., 2007. "Transit competitiveness in polycentric metropolitan regions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(1), pages 19-40, January.
  • Handle: RePEc:eee:transa:v:41:y:2007:i:1:p:19-40
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(06)00043-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuby, Michael & Barranda, Anthony & Upchurch, Christopher, 2004. "Factors influencing light-rail station boardings in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 223-247, March.
    2. Giuliano, Genevieve & Small, Kenneth A., 1991. "Subcenters in the Los Angeles region," Regional Science and Urban Economics, Elsevier, vol. 21(2), pages 163-182, July.
    3. Modarres, Ali, 2003. "Polycentricity and transit service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 841-864, December.
    4. Ben-Akiva, Moshe & Morikawa, Takayuki, 2002. "Comparing ridership attraction of rail and bus," Transport Policy, Elsevier, vol. 9(2), pages 107-116, April.
    5. Hillel Bar-Gera, 2002. "Origin-Based Algorithm for the Traffic Assignment Problem," Transportation Science, INFORMS, vol. 36(4), pages 398-417, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lopes, Miguel & Dias, Ana Mélice, 2022. "Changing perspectives in times of crisis. The impact of COVID-19 on territorial accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 285-301.
    2. Lopez-Lambas, María Eugenia & Monzon, Andres, 2010. "Private funding and management for public interchanges in Madrid," Research in Transportation Economics, Elsevier, vol. 29(1), pages 323-328.
    3. Cats, Oded & Wang, Qian & Zhao, Yu, 2015. "Identification and classification of public transport activity centres in Stockholm using passenger flows data," Journal of Transport Geography, Elsevier, vol. 48(C), pages 10-22.
    4. Scott, Ryan P. & Scott, Tyler A. & Greer, Robert A., 2019. "The environmental and safety performance of gas utilities in the United States," Energy Policy, Elsevier, vol. 133(C).
    5. Clifton, Geoffrey T. & Mulley, Corinne, 2016. "A historical overview of enhanced bus services in Australian cities: What has been tried, what has worked?," Research in Transportation Economics, Elsevier, vol. 59(C), pages 11-25.
    6. Joseph DeSalvo & Sisinnio Concas, 2013. "The Effect of Density and Trip-Chaining on the Interaction between Urban Form and Transit Demand," Working Papers 0413, University of South Florida, Department of Economics.
    7. Carlos Romero & Clara Zamorano & Emilio Ortega & Belén Martín, 2021. "Access to Secondary HSR Stations in the Urban Periphery: A Generalised Cost-Based Assessment," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    8. Lee, Hasik & Park, Ho-Chul & Kho, Seung-Young & Kim, Dong-Kyu, 2019. "Assessing transit competitiveness in Seoul considering actual transit travel times based on smart card data," Journal of Transport Geography, Elsevier, vol. 80(C).
    9. Albalate, Daniel & Bel, Germà, 2012. "Speed limit laws in America: The role of geography, mobility and ideology," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 337-347.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wasserman, Jacob L. & Taylor, Brian D., 2023. "State of the BART: Analyzing the Determinants of Bay Area Rapid Transit Use in the 2010s," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    2. Jifei Ban & Richard Arnott & Jacob L. Macdonald, 2017. "Identifying Employment Subcenters: The Method of Exponentially Declining Cutoffs," Land, MDPI, vol. 6(1), pages 1-33, March.
    3. Jinbao Zhao & Wei Deng & Yan Song & Yueran Zhu, 2014. "Analysis of Metro ridership at station level and station-to-station level in Nanjing: an approach based on direct demand models," Transportation, Springer, vol. 41(1), pages 133-155, January.
    4. Amaya Vega & Aisling Reynolds-Feighan, 2007. "Employment sub-centres and the choice of mode of travel to work in the Dublin region," Working Papers 200702, School of Economics, University College Dublin.
    5. Lane, Bradley W., 2008. "Significant characteristics of the urban rail renaissance in the United States: A discriminant analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 279-295, February.
    6. Daeyoung Kwon & Sung Eun Sally Oh & Sangwon Choi & Brian H. S. Kim, 2023. "Viability of compact cities in the post-COVID-19 era: subway ridership variations in Seoul Korea," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 71(1), pages 175-203, August.
    7. Jie Zhang & Yang Xie, 2015. "Optimal Intra-Urban Hierarchy of Activity Centers—A Minimized Household Travel Energy Consumption Approach," Sustainability, MDPI, vol. 7(9), pages 1-19, August.
    8. Sivakumaran, Karthik & Li, Yuwei & Cassidy, Michael & Madanat, Samer, 2014. "Access and the choice of transit technology," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 204-221.
    9. Junjun Wei & Kejun Long & Jian Gu & Qingling Ju & Piao Zhu, 2020. "Optimizing Bus Line Based on Metro-Bus Integration," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    10. Amaya Vega & Aisling Reynolds-Feighan, 2008. "Employment Sub-centres and Travel-to-Work Mode Choice in the Dublin Region," Urban Studies, Urban Studies Journal Limited, vol. 45(9), pages 1747-1768, August.
    11. Jae Ik Kim & Chang Hwan Yeo & Jin-Hwi Kwon, 2014. "Spatial change in urban employment distribution in Seoul metropolitan city: clustering, dispersion and general dispersion," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 18(3), pages 355-372, November.
    12. de Bellefon, Marie-Pierre & Combes, Pierre-Philippe & Duranton, Gilles & Gobillon, Laurent & Gorin, Clément, 2021. "Delineating urban areas using building density," Journal of Urban Economics, Elsevier, vol. 125(C).
    13. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    14. Eran Feitelson, 2001. "Malicious Siting or Unrecognised Processes? A Spatio-temporal Analysis of Environmental Conflicts in Tel-Aviv," Urban Studies, Urban Studies Journal Limited, vol. 38(7), pages 1143-1159, June.
    15. Ivan Muñiz & Anna Galindo & Miguel Angel García, 2005. "Descentralisation, Integration and polycentrism in Barcelona," Working Papers wpdea0512, Department of Applied Economics at Universitat Autonoma of Barcelona.
    16. Liv Osland & Inge Thorsen, 2013. "Spatial Impacts, Local Labour Market Characteristics and Housing Prices," Urban Studies, Urban Studies Journal Limited, vol. 50(10), pages 2063-2083, August.
    17. Jangik Jin & Kurt Paulsen, 2018. "Does accessibility matter? Understanding the effect of job accessibility on labour market outcomes," Urban Studies, Urban Studies Journal Limited, vol. 55(1), pages 91-115, January.
    18. Nie, Yu (Marco), 2010. "A class of bush-based algorithms for the traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 73-89, January.
    19. Juan Zhu & Xinyi Niu & Cheng Shi, 2019. "The Influencing Factors of a Polycentric Employment System on Jobs-Housing Matching—A Case Study of Hangzhou, China," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    20. Kepaptsoglou, Konstantinos & Stathopoulos, Antony & Karlaftis, Matthew G., 2017. "Ridership estimation of a new LRT system: Direct demand model approach," Journal of Transport Geography, Elsevier, vol. 58(C), pages 146-156.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:41:y:2007:i:1:p:19-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.