IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v116y2024ics0966692324000322.html
   My bibliography  Save this article

A multi-objective model to design shared e-kick scooters parking spaces in large urban areas

Author

Listed:
  • Colovic, Aleksandra
  • Prencipe, Luigi Pio
  • Giuffrida, Nadia
  • Ottomanelli, Michele

Abstract

In recent years, the micromobility and the usage of shared electric kick scooters (e-kscooters) have been constantly growing, especially for systematic and recreational trips in large urban areas. Micromobility might be seen as a well-suited last-mile solution by providing a flexible travel service connection with public transport and MaaS (Mobility as a Service), in general. However, there is a need for implementing adequate regulations regarding safety aspects and shared e-kscooter parking locations, but also for meeting the user requirements. The choice of optimal shared e-kscooter parking locations could help decision-makers to regulate unmanaged dock-less shared e-kscooter parking spots that could generate issues for other road users. To this end, in this paper, a novel multi-objective Micromobility Maximal Coverage Parking Location model (M-MCPL) is developed. The model has been solved by applying an elitist Genetic Algorithm that returns the optimal shared e-kscooter parking locations based on the following objective functions: i) the maximization of the population coverage; ii) the maximization of multimodal accessibility coverage (i.e., bus, railway, and metro modes); iii) the maximization of the attraction coverage considering the most relevant points of interest for each corresponding zone in large urban areas. The proposed M-MCPL model has been applied to the case of Rome (Italy) and results suggest priorities for the shared e-kscooter parking locations design. Furthermore, the proposed model is flexible and can be considered as a decision support tool for decision-makers when planning dedicated services in different large urban areas. For that purpose, we conducted the sensitivity analysis by focusing on the single-objective model in which decision-makers might be interested in providing only high accessibility to transport services or maximizing potential demand.

Suggested Citation

  • Colovic, Aleksandra & Prencipe, Luigi Pio & Giuffrida, Nadia & Ottomanelli, Michele, 2024. "A multi-objective model to design shared e-kick scooters parking spaces in large urban areas," Journal of Transport Geography, Elsevier, vol. 116(C).
  • Handle: RePEc:eee:jotrge:v:116:y:2024:i:c:s0966692324000322
    DOI: 10.1016/j.jtrangeo.2024.103823
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692324000322
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2024.103823?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elżbieta Macioszek & Maria Cieśla & Anna Granà, 2023. "Future Development of an Energy-Efficient Electric Scooter Sharing System Based on a Stakeholder Analysis Method," Energies, MDPI, vol. 16(1), pages 1-24, January.
    2. Esztergár-Kiss, Domokos & Tordai, Dániel & Lopez Lizarraga, Julio C., 2022. "Assessment of travel behavior related to e-scooters using a stated preference experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 389-405.
    3. Owain James & J I Swiderski & John Hicks & Denis Teoman & Ralph Buehler, 2019. "Pedestrians and E-Scooters: An Initial Look at E-Scooter Parking and Perceptions by Riders and Non-Riders," Sustainability, MDPI, vol. 11(20), pages 1-13, October.
    4. Ralph Buehler & Andrea Broaddus & Elizabeth White & Ted Sweeney & Chris Evans, 2022. "An Exploration of the Decline in E-Scooter Ridership after the Introduction of Mandatory E-Scooter Parking Corrals on Virginia Tech’s Campus in Blacksburg, VA," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    5. Zhao, De & Ong, Ghim Ping, 2021. "Geo-fenced parking spaces identification for free-floating bicycle sharing system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 49-63.
    6. Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
    7. He, Xiaozhou & Wang, Qingyi, 2023. "A location-routing model for free-floating shared bike collection considering manual gathering and truck transportation," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    8. Martina Fazio & Nadia Giuffrida & Michela Le Pira & Giuseppe Inturri & Matteo Ignaccolo, 2021. "Planning Suitable Transport Networks for E-Scooters to Foster Micromobility Spreading," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    9. Vallamsundar, Suriya & Jaikumar, Rohit & Venugopal, Madhusudhan, 2022. "Exploring the Spatial-temporal dynamics of travel patterns and air pollution exposure of E-scooters," Journal of Transport Geography, Elsevier, vol. 105(C).
    10. Georgia Ayfantopoulou & Josep Maria Salanova Grau & Zisis Maleas & Alexandros Siomos, 2022. "Micro-Mobility User Pattern Analysis and Station Location in Thessaloniki," Sustainability, MDPI, vol. 14(11), pages 1-14, May.
    11. Wang, Ying-Wei & Lin, Chuah-Chih, 2013. "Locating multiple types of recharging stations for battery-powered electric vehicle transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 76-87.
    12. Laa, Barbara & Leth, Ulrich, 2020. "Survey of E-scooter users in Vienna: Who they are and how they ride," Journal of Transport Geography, Elsevier, vol. 89(C).
    13. Hu, Yujie & Zhang, Yongping & Lamb, David & Zhang, Mingming & Jia, Peng, 2019. "Examining and optimizing the BCycle bike-sharing system – A pilot study in Colorado, US," Applied Energy, Elsevier, vol. 247(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Draženko Glavić & Ana Trpković & Marina Milenković & Sreten Jevremović, 2021. "The E-Scooter Potential to Change Urban Mobility—Belgrade Case Study," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    2. Tiziana Campisi & Anastasios Skoufas & Alexandros Kaltsidis & Socrates Basbas, 2021. "Gender Equality and E-Scooters: Mind the Gap! A Statistical Analysis of the Sicily Region, Italy," Social Sciences, MDPI, vol. 10(10), pages 1-24, October.
    3. Monika Hamerska & Monika Ziółko & Patryk Stawiarski, 2022. "A Sustainable Transport System—The MMQUAL Model of Shared Micromobility Service Quality Assessment," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    4. Mohammed Hamad Almannaa & Faisal Adnan Alsahhaf & Huthaifa I. Ashqar & Mohammed Elhenawy & Mahmoud Masoud & Andry Rakotonirainy, 2021. "Perception Analysis of E-Scooter Riders and Non-Riders in Riyadh, Saudi Arabia: Survey Outputs," Sustainability, MDPI, vol. 13(2), pages 1-24, January.
    5. Joonho Ko & Tae-Hyoung Tommy Gim & Randall Guensler, 2017. "Locating refuelling stations for alternative fuel vehicles: a review on models and applications," Transport Reviews, Taylor & Francis Journals, vol. 37(5), pages 551-570, September.
    6. Fei-Hui Huang, 2021. "User Behavioral Intentions toward a Scooter-Sharing Service: An Empirical Study," Sustainability, MDPI, vol. 13(23), pages 1-21, November.
    7. Zhang, Yuting & Nelson, John D. & Mulley, Corinne, 2024. "Learning from the evidence: Insights for regulating e-scooters," Transport Policy, Elsevier, vol. 151(C), pages 63-74.
    8. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Samira Dibaj & Aryan Hosseinzadeh & Miloš N. Mladenović & Robert Kluger, 2021. "Where Have Shared E-Scooters Taken Us So Far? A Review of Mobility Patterns, Usage Frequency, and Personas," Sustainability, MDPI, vol. 13(21), pages 1-27, October.
    10. Liu, Haoxiang & Zou, Yuncheng & Chen, Ya & Long, Jiancheng, 2021. "Optimal locations and electricity prices for dynamic wireless charging links of electric vehicles for sustainable transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    11. Alberica Domitilla Bozzi & Anne Aguilera, 2021. "Shared E-Scooters: A Review of Uses, Health and Environmental Impacts, and Policy Implications of a New Micro-Mobility Service," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    12. Luo, Xiaoling & Fan, Wenbo, 2023. "Joint design of electric bus transit service and wireless charging facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    13. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    14. Cloud, Cannon & Heß, Simon & Kasinger, Johannes, 2023. "Shared e-scooter services and road safety: Evidence from six European countries," European Economic Review, Elsevier, vol. 160(C).
    15. Ecer, Fatih & Küçükönder, Hande & Kayapınar Kaya, Sema & Faruk Görçün, Ömer, 2023. "Sustainability performance analysis of micro-mobility solutions in urban transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    16. Maximilian Heumann & Tobias Kraschewski & Tim Brauner & Lukas Tilch & Michael H. Breitner, 2021. "A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    17. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    18. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    19. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    20. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:116:y:2024:i:c:s0966692324000322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.