IDEAS home Printed from https://ideas.repec.org/a/eee/joreco/v16y2009i3p227-231.html
   My bibliography  Save this article

Modelling pedestrian go-home decisions: A comparison of linear and nonlinear compensatory, and conjunctive non-compensatory specifications

Author

Listed:
  • Zhu, Wei
  • Timmermans, Harry

Abstract

This paper presents the main findings of an application of several models to predict the go-home decision of pedestrians in shopping streets. Two compensatory multinomial logit models, one with a linear utility function of time and the other with a nonlinear utility function of time, and a non-compensatory conjunctive model are specified. Data about pedestrian behaviour in a major shopping street in Beijing served as input for model estimation. The conjunctive model performs best, suggesting that pedestrians use simplifying heuristics to decide when to end the shopping trip and go home. In addition, the nonlinear multinomial logit model outperforms the linear model, indicating that marginal utility of time decreases with increasing time.

Suggested Citation

  • Zhu, Wei & Timmermans, Harry, 2009. "Modelling pedestrian go-home decisions: A comparison of linear and nonlinear compensatory, and conjunctive non-compensatory specifications," Journal of Retailing and Consumer Services, Elsevier, vol. 16(3), pages 227-231.
  • Handle: RePEc:eee:joreco:v:16:y:2009:i:3:p:227-231
    DOI: 10.1016/j.jretconser.2008.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969698908000623
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jretconser.2008.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoogendoorn, S. P. & Bovy, P. H. L., 2004. "Pedestrian route-choice and activity scheduling theory and models," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 169-190, February.
    2. Antonini, Gianluca & Bierlaire, Michel & Weber, Mats, 2006. "Discrete choice models of pedestrian walking behavior," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 667-687, September.
    3. Bhat, Chandra R., 1996. "A hazard-based duration model of shopping activity with nonparametric baseline specification and nonparametric control for unobserved heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 189-207, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shatu, Farjana & Yigitcanlar, Tan, 2018. "Development and validity of a virtual street walkability audit tool for pedestrian route choice analysis—SWATCH," Journal of Transport Geography, Elsevier, vol. 70(C), pages 148-160.
    2. Feng, Zhongxiang & Gao, Ya & Zhu, Dianchen & Chan, Ho-Yin & Zhao, Mingming & Xue, Rui, 2024. "Impact of risk perception and trust in autonomous vehicles on pedestrian crossing decision: Navigating the social-technological intersection with the ICLV model," Transport Policy, Elsevier, vol. 152(C), pages 71-86.
    3. Qing Liu & Neeraj Arora, 2011. "Efficient Choice Designs for a Consider-Then-Choose Model," Marketing Science, INFORMS, vol. 30(2), pages 321-338, 03-04.
    4. Shatu, Farjana & Yigitcanlar, Tan & Bunker, Jonathan, 2019. "Shortest path distance vs. least directional change: Empirical testing of space syntax and geographic theories concerning pedestrian route choice behaviour," Journal of Transport Geography, Elsevier, vol. 74(C), pages 37-52.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Mahmod Shuaib, 2016. "Modeling the Pedestrian Ability of Detecting Lanes and Lane Changing Behavior," Modern Applied Science, Canadian Center of Science and Education, vol. 10(7), pages 1-1, July.
    2. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    3. Wang, Shuaian & Zhang, Wei & Qu, Xiaobo, 2018. "Trial-and-error train fare design scheme for addressing boarding/alighting congestion at CBD stations," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 318-335.
    4. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    5. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    6. Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
    7. Hänseler, Flurin S. & Bierlaire, Michel & Farooq, Bilal & Mühlematter, Thomas, 2014. "A macroscopic loading model for time-varying pedestrian flows in public walking areas," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 60-80.
    8. Ji, Xiangfeng & Zhang, Jian & Ran, Bin, 2013. "A study on pedestrian choice between stairway and escalator in the transfer station based on floor field cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5089-5100.
    9. Li, Maosheng & Shu, Panpan & Xiao, Yao & Wang, Pu, 2021. "Modeling detour decision combined the tactical and operational layer based on perceived density," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    10. Heng Wang & Zehao Jiang & Tiandong Xu & Feng Li, 2021. "A Quantitative Approach of Subway Station Passengers’ Heterogeneity of Decision Preference Considering Personality Traits during Emergency Evacuation," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    11. Haghani, Milad & Sarvi, Majid, 2017. "Stated and revealed exit choices of pedestrian crowd evacuees," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 238-259.
    12. Ken Hidaka & Toshiyuki Yamamoto, 2021. "Activity Scheduling Behavior of the Visitors to an Outdoor Recreational Facility Using GPS Data," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
    13. Jeongyun Kim & Sehyun Tak & Michel Bierlaire & Hwasoo Yeo, 2020. "Trajectory Data Analysis on the Spatial and Temporal Influence of Pedestrian Flow on Path Planning Decision," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    14. Ji, Xiangfeng & Zhou, Xuemei & Ran, Bin, 2013. "A cell-based study on pedestrian acceleration and overtaking in a transfer station corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1828-1839.
    15. Sobhana, Karthika P. & Choubey, Nipun & Verma, Ashish, 2023. "Modelling and simulating the leader–follower behaviour of pedestrians in unidirectional flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    16. Li, Baibing, 2013. "A model of pedestrians’ intended waiting times for street crossings at signalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 17-28.
    17. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani, 2016. "A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 159-176.
    18. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2015. "Accommodating taste heterogeneity and desired substitution pattern in exit choices of pedestrian crowd evacuees using a mixed nested logit model," Journal of choice modelling, Elsevier, vol. 16(C), pages 58-68.
    19. Yuki Oyama, 2023. "Global path preference and local response: A reward decomposition approach for network path choice analysis in the presence of locally perceived attributes," Papers 2307.08646, arXiv.org.
    20. Wei Zhu & Harry Timmermans, 2011. "Modeling pedestrian shopping behavior using principles of bounded rationality: model comparison and validation," Journal of Geographical Systems, Springer, vol. 13(2), pages 101-126, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:joreco:v:16:y:2009:i:3:p:227-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-retailing-and-consumer-services .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.