IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v64y2016icp102-114.html
   My bibliography  Save this article

Obtaining the optimal fleet mix: A case study about towing tractors at airports

Author

Listed:
  • Du, Jia Yan
  • Brunner, Jens O.
  • Kolisch, Rainer

Abstract

Planes do not have a reverse gear. Hence, they need to be towed by tractors when leaving the gate. Towing tractors differ with respect to investment as well as variable costs and plane type compatibility. We propose a model which addresses the problem of a cost minimal fleet composition to support towing service providers in their strategic investment decisions. The model takes into account a maximum lifetime, a minimum duration of use, an overhaul option and a sell option. In a case study with a major European airport (our cooperating airport) we generate a multi-period fleet investment schedule. Furthermore, we introduce a 4-step approach for demand aggregation based on flight schedule information. We analyze the impact of demand variation, flight schedule disruptions and cost structure on the optimal buy, overhaul and sell policy. The scenario analyses demonstrate the robustness of the investment schedule with respect to these factors. Ignoring the existing fleet, a green field scenario reveals saving potentials of more than 5% when applying this model.

Suggested Citation

  • Du, Jia Yan & Brunner, Jens O. & Kolisch, Rainer, 2016. "Obtaining the optimal fleet mix: A case study about towing tractors at airports," Omega, Elsevier, vol. 64(C), pages 102-114.
  • Handle: RePEc:eee:jomega:v:64:y:2016:i:c:p:102-114
    DOI: 10.1016/j.omega.2015.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048315002492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2015.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C Burt & L Caccetta & P Welgama & L Fouché, 2011. "Equipment selection with heterogeneous fleets for multiple-period schedules," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(8), pages 1498-1509, August.
    2. Du, Jia Yan & Brunner, Jens O. & Kolisch, Rainer, 2014. "Planning towing processes at airports more efficiently," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 293-304.
    3. Said Salhi & M. Sari & Doudja Saïdi-Kabeche & Nasséra Touati, 1992. "Adaptation of some Vehicle Fleet Mix heuristics," Post-Print halshs-00166301, HAL.
    4. Peiling Wu & Joseph C. Hartman & George R. Wilson, 2005. "An Integrated Model and Solution Approach for Fleet Sizing with Heterogeneous Assets," Transportation Science, INFORMS, vol. 39(1), pages 87-103, February.
    5. Salhi, S & Sari, M & Saidi, D & Touati, Nac, 1992. "Adaptation of some vehicle fleet mix heuristics," Omega, Elsevier, vol. 20(5-6), pages 653-660.
    6. Schick, GJ & Stroup, JW, 1981. "Experience with a multi-year fleet planning model," Omega, Elsevier, vol. 9(4), pages 389-396.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hutter, Leonie & Jaehn, Florian & Neumann, Simone, 2019. "Influencing factors on airplane boarding times," Omega, Elsevier, vol. 87(C), pages 177-190.
    2. Sa, Constantijn A.A. & Santos, Bruno F. & Clarke, John-Paul B., 2020. "Portfolio-based airline fleet planning under stochastic demand," Omega, Elsevier, vol. 97(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renaud, Jacques & Boctor, Fayez F., 2002. "A sweep-based algorithm for the fleet size and mix vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 140(3), pages 618-628, August.
    2. Day, Jamison M. & Daniel Wright, P. & Schoenherr, Tobias & Venkataramanan, Munirpallam & Gaudette, Kevin, 2009. "Improving routing and scheduling decisions at a distributor of industrial gasses," Omega, Elsevier, vol. 37(1), pages 227-237, February.
    3. Salhi, S. & Sari, M., 1997. "A multi-level composite heuristic for the multi-depot vehicle fleet mix problem," European Journal of Operational Research, Elsevier, vol. 103(1), pages 95-112, November.
    4. Imran, Arif & Salhi, Said & Wassan, Niaz A., 2009. "A variable neighborhood-based heuristic for the heterogeneous fleet vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 509-518, September.
    5. Nagy, Gabor & Salhi, Said, 2005. "Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 162(1), pages 126-141, April.
    6. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "Thirty years of heterogeneous vehicle routing," European Journal of Operational Research, Elsevier, vol. 249(1), pages 1-21.
    7. Xue Han & Peixin Zhao & Qingchun Meng & Shengnan Yin & Di Wan, 2020. "Optimal scheduling of airport ferry vehicles based on capacity network," Annals of Operations Research, Springer, vol. 295(1), pages 163-182, December.
    8. Silvia Padrón & Daniel Guimarans, 2019. "An Improved Method for Scheduling Aircraft Ground Handling Operations From a Global Perspective," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-25, August.
    9. Christina N. Burt & Lou Caccetta, 2014. "Equipment Selection for Surface Mining: A Review," Interfaces, INFORMS, vol. 44(2), pages 143-162, April.
    10. Salhi, Said & Wassan, Niaz & Hajarat, Mutaz, 2013. "The Fleet Size and Mix Vehicle Routing Problem with Backhauls: Formulation and Set Partitioning-based Heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 22-35.
    11. Klosterhalfen, S.T. & Kallrath, J. & Fischer, G., 2014. "Rail car fleet design: Optimization of structure and size," International Journal of Production Economics, Elsevier, vol. 157(C), pages 112-119.
    12. Haluk Yapicioglu, 2018. "Multiperiod Multi Traveling Salesmen Problem Considering Time Window Constraints with an Application to a Real World Case," Networks and Spatial Economics, Springer, vol. 18(4), pages 773-801, December.
    13. Han, Xue & Zhao, Peixin & Kong, Dexin, 2023. "Two-stage optimization of airport ferry service delay considering flight uncertainty," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1103-1116.
    14. Nakousi, C. & Pascual, R. & Anani, A. & Kristjanpoller, F. & Lillo, P., 2018. "An asset-management oriented methodology for mine haul-fleet usage scheduling," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 336-344.
    15. Kallrath, J. & Klosterhalfen, S.T. & Walter, M. & Fischer, G. & Blackburn, R., 2017. "Payload-based fleet optimization for rail cars in the chemical industry," European Journal of Operational Research, Elsevier, vol. 259(1), pages 113-129.
    16. Felix Papier & Ulrich W. Thonemann, 2008. "Queuing Models for Sizing and Structuring Rental Fleets," Transportation Science, INFORMS, vol. 42(3), pages 302-317, August.
    17. Zhang, Le & Gu, Weihua & Fu, Liangliang & Mei, Yu & Hu, Yaohua, 2021. "A two-stage heuristic approach for fleet management optimization under time-varying demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    18. Zhao, Peixin & Han, Xue & Wan, Di, 2021. "Evaluation of the airport ferry vehicle scheduling based on network maximum flow model," Omega, Elsevier, vol. 99(C).
    19. Rosskopf, Michael & Lehner, Stephan & Gollnick, Volker, 2014. "Economic–environmental trade-offs in long-term airline fleet planning," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 109-115.
    20. Igloi, F. & Vanderzande, C., 1986. "Renormalisation group study of the (2+1) dimensional Potts model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 135(2), pages 347-358.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:64:y:2016:i:c:p:102-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.