IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v35y2007i1p61-74.html
   My bibliography  Save this article

A flight scheduling model for Taiwan airlines under market competitions

Author

Listed:
  • Yan, Shangyao
  • Tang, Ching-Hui
  • Lee, Ming-Chei

Abstract

In this research, we develop a short-term flight scheduling model with variable market shares in order to help a Taiwan airline to solve for better fleet routes and flight schedules in today's competitive markets. The model is formulated as a non-linear mixed integer program, characterized as an NP-hard problem, which is more difficult to solve than the traditional fixed market share flight scheduling problems, often formulated as integer/mixed integer linear programs. We develop a heuristic method to efficiently solve the model. The test results, mainly using the data from a major Taiwan airline's operations, show the good performance of the model and the solution algorithm.

Suggested Citation

  • Yan, Shangyao & Tang, Ching-Hui & Lee, Ming-Chei, 2007. "A flight scheduling model for Taiwan airlines under market competitions," Omega, Elsevier, vol. 35(1), pages 61-74, February.
  • Handle: RePEc:eee:jomega:v:35:y:2007:i:1:p:61-74
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(05)00061-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Proussaloglou, Kimon & Koppelman, Frank S., 1999. "The choice of air carrier, flight, and fare class," Journal of Air Transport Management, Elsevier, vol. 5(4), pages 193-201.
    2. Yan, Shangyao & Chen, Hao-Lei, 2002. "A scheduling model and a solution algorithm for inter-city bus carriers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 805-825, November.
    3. Yan, Shangyao & Young, Hwei-Fwa, 1996. "A decision support framework for multi-fleet routing and multi-stop flight scheduling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 379-398, September.
    4. Jeph Abara, 1989. "Applying Integer Linear Programming to the Fleet Assignment Problem," Interfaces, INFORMS, vol. 19(4), pages 20-28, August.
    5. Amos Levin, 1971. "Scheduling and Fleet Routing Models for Transportation Systems," Transportation Science, INFORMS, vol. 5(3), pages 232-255, August.
    6. L. W. Clarke & C. A. Hane & E. L. Johnson & G. L. Nemhauser, 1996. "Maintenance and Crew Considerations in Fleet Assignment," Transportation Science, INFORMS, vol. 30(3), pages 249-260, August.
    7. Guy Desaulniers & Jacques Desrosiers & Yvan Dumas & Marius M. Solomon & François Soumis, 1997. "Daily Aircraft Routing and Scheduling," Management Science, INFORMS, vol. 43(6), pages 841-855, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Warburg, Valdemar & Gotsæd Hansen, Troels & Larsen, Allan & Norman, Hans & Andersson, Erik, 2008. "Dynamic airline scheduling: An analysis of the potentials of refleeting and retiming," Journal of Air Transport Management, Elsevier, vol. 14(4), pages 163-167.
    2. Nima Safaei & Dragan Banjevic & Andrew Jardine, 2011. "Workforce-constrained maintenance scheduling for military aircraft fleet: a case study," Annals of Operations Research, Springer, vol. 186(1), pages 295-316, June.
    3. Yan, Shangyao & Tang, Ching-Hui, 2009. "Inter-city bus scheduling under variable market share and uncertain market demands," Omega, Elsevier, vol. 37(1), pages 178-192, February.
    4. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    5. Yılmaz, Seren Bilge & Yücel, Eda, 2021. "Optimizing onboard catering loading locations and plans for airlines," Omega, Elsevier, vol. 99(C).
    6. Kinene, Alan & Granberg, Tobias Andersson & Birolini, Sebastian & Adler, Nicole & Polishchuk, Valentin & Skoglund, Jean-Marie, 2022. "An auction framework for assessing the tendering of subsidised routes in air transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 320-337.
    7. Yan, Shangyao & Tang, Ching-Hui & Fu, Tseng-Chih, 2008. "An airline scheduling model and solution algorithms under stochastic demands," European Journal of Operational Research, Elsevier, vol. 190(1), pages 22-39, October.
    8. Srećko KRILE & Marina KRILE, 2015. "New approach in definition of multi-stop flight routes," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 10(1), pages 87-96, March.
    9. Pita, João Pedro & Antunes, António Pais & Barnhart, Cynthia & de Menezes, António Gomes, 2013. "Setting public service obligations in low-demand air transportation networks: Application to the Azores," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 35-48.
    10. Luis Cadarso & Vikrant Vaze & Cynthia Barnhart & Ángel Marín, 2017. "Integrated Airline Scheduling: Considering Competition Effects and the Entry of the High Speed Rail," Transportation Science, INFORMS, vol. 51(1), pages 132-154, February.
    11. Wang, David Z.W. & Lo, Hong K., 2008. "Multi-fleet ferry service network design with passenger preferences for differential services," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 798-822, November.
    12. Chung, Ji-Won & Oh, Seog-Moon & Choi, In-Chan, 2009. "A hybrid genetic algorithm for train sequencing in the Korean railway," Omega, Elsevier, vol. 37(3), pages 555-565, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belanger, Nicolas & Desaulniers, Guy & Soumis, Francois & Desrosiers, Jacques, 2006. "Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1754-1766, December.
    2. F M Zeghal & M Haouari & H D Sherali & N Aissaoui, 2011. "Flexible aircraft fleeting and routing at TunisAir," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 368-380, February.
    3. Haouari, Mohamed & Aissaoui, Najla & Mansour, Farah Zeghal, 2009. "Network flow-based approaches for integrated aircraft fleeting and routing," European Journal of Operational Research, Elsevier, vol. 193(2), pages 591-599, March.
    4. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    5. Hanif D. Sherali & Ebru K. Bish & Xiaomei Zhu, 2005. "Polyhedral Analysis and Algorithms for a Demand-Driven Refleeting Model for Aircraft Assignment," Transportation Science, INFORMS, vol. 39(3), pages 349-366, August.
    6. Yan, Shangyao & Tang, Ching-Hui & Fu, Tseng-Chih, 2008. "An airline scheduling model and solution algorithms under stochastic demands," European Journal of Operational Research, Elsevier, vol. 190(1), pages 22-39, October.
    7. João P. Pita & Cynthia Barnhart & António P. Antunes, 2013. "Integrated Flight Scheduling and Fleet Assignment Under Airport Congestion," Transportation Science, INFORMS, vol. 47(4), pages 477-492, November.
    8. Sriram, Chellappan & Haghani, Ali, 2003. "An optimization model for aircraft maintenance scheduling and re-assignment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(1), pages 29-48, January.
    9. Oliver Faust & Jochen Gönsch & Robert Klein, 2017. "Demand-Oriented Integrated Scheduling for Point-to-Point Airlines," Transportation Science, INFORMS, vol. 51(1), pages 196-213, February.
    10. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    11. Ioachim, Irina & Desrosiers, Jacques & Soumis, Francois & Belanger, Nicolas, 1999. "Fleet assignment and routing with schedule synchronization constraints," European Journal of Operational Research, Elsevier, vol. 119(1), pages 75-90, November.
    12. Antunes, António P. & Santos, Miguel G. & Pita, João P. & Menezes, António G., 2018. "Study on the evolution of the air transport network of the Azores," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 837-851.
    13. Jean-François Cordeau & Goran Stojković & François Soumis & Jacques Desrosiers, 2001. "Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling," Transportation Science, INFORMS, vol. 35(4), pages 375-388, November.
    14. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    15. Bélanger, Nicolas & Desaulniers, Guy & Soumis, François & Desrosiers, Jacques & Lavigne, June, 2006. "Weekly airline fleet assignment with homogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 40(4), pages 306-318, May.
    16. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    17. Cynthia Barnhart & Amr Farahat & Manoj Lohatepanont, 2009. "Airline Fleet Assignment with Enhanced Revenue Modeling," Operations Research, INFORMS, vol. 57(1), pages 231-244, February.
    18. Hanif D. Sherali & Ki-Hwan Bae & Mohamed Haouari, 2010. "Integrated Airline Schedule Design and Fleet Assignment: Polyhedral Analysis and Benders' Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 500-513, November.
    19. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A compact optimization model for the tail assignment problem," European Journal of Operational Research, Elsevier, vol. 264(2), pages 548-557.
    20. Okan Örsan Özener & Melda Örmeci Matoğlu & Güneş Erdoğan & Mohamed Haouari & Hasan Sözer, 2017. "Solving a large-scale integrated fleet assignment and crew pairing problem," Annals of Operations Research, Springer, vol. 253(1), pages 477-500, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:35:y:2007:i:1:p:61-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.