IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v108y1998i1p224-237.html
   My bibliography  Save this article

Addressing the multigroup discriminant problem using multivariate statistics and mathematical programming

Author

Listed:
  • Ostermark, Ralf
  • Hoglund, Rune

Abstract

No abstract is available for this item.

Suggested Citation

  • Ostermark, Ralf & Hoglund, Rune, 1998. "Addressing the multigroup discriminant problem using multivariate statistics and mathematical programming," European Journal of Operational Research, Elsevier, vol. 108(1), pages 224-237, July.
  • Handle: RePEc:eee:ejores:v:108:y:1998:i:1:p:224-237
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(96)00360-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srinivasan, Venkat & Kim, Yong H, 1987. "Credit Granting: A Comparative Analysis of Classification Procedures," Journal of Finance, American Finance Association, vol. 42(3), pages 665-681, July.
    2. Joy, O. Maurice & Tollefson, John O., 1975. "On the Financial Applications of Discriminant Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 10(5), pages 723-739, December.
    3. Deakin, Eb, 1972. "Discriminant Analysis Of Predictors Of Business Failure," Journal of Accounting Research, Wiley Blackwell, vol. 10(1), pages 167-179.
    4. Hosseini, Jamshid C. & Armacost, Robert L., 1994. "The two-group discriminant problem with equal group mean vectors: An experimental evaluation of six linear/nonlinear programming formulations," European Journal of Operational Research, Elsevier, vol. 77(2), pages 241-252, September.
    5. Silva, Antonio Pedro Duarte & Stam, Antonie, 1994. "Second order mathematical programming formulations for discriminant analysis," European Journal of Operational Research, Elsevier, vol. 72(1), pages 4-22, January.
    6. Freed, Ned & Glover, Fred, 1981. "Simple but powerful goal programming models for discriminant problems," European Journal of Operational Research, Elsevier, vol. 7(1), pages 44-60, May.
    7. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    8. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    9. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavur, Robert, 2002. "A comparative study of the effect of the position of outliers on classical and nontraditional approaches to the two-group classification problem," European Journal of Operational Research, Elsevier, vol. 136(3), pages 603-615, February.
    2. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    2. Loucopoulos, Constantine, 2001. "Three-group classification with unequal misclassification costs: a mathematical programming approach," Omega, Elsevier, vol. 29(3), pages 291-297, June.
    3. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    4. Juan Laborda & Seyong Ryoo, 2021. "Feature Selection in a Credit Scoring Model," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
    5. Espahbodi, Hassan & Espahbodi, Pouran, 2003. "Binary choice models and corporate takeover," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 549-574, April.
    6. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    7. Paolo Angelis & Fulvio Gismondi & Riccardo Ottaviani, 1994. "A non-parametric statistical model for the control of Italian insurance companies," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 17(1), pages 69-84, March.
    8. Carlos Serrano-Cinca, 1997. "Feedforward neural networks in the classification of financial information," The European Journal of Finance, Taylor & Francis Journals, vol. 3(3), pages 183-202.
    9. Teija Laitinen & Maria Kankaanpaa, 1999. "Comparative analysis of failure prediction methods: the Finnish case," European Accounting Review, Taylor & Francis Journals, vol. 8(1), pages 67-92.
    10. Mohammad Mahbobi & Rashmit Singh G. Sukhmani, 2017. "Likelihood of financial distress in Canadian oil and gas market: An optimized hybrid forecasting approach," Journal of Economic and Financial Studies (JEFS), LAR Center Press, vol. 5(3), pages 12-25, June.
    11. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    12. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
    13. Sueyoshi, Toshiyuki & Goto, Mika, 2009. "DEA-DA for bankruptcy-based performance assessment: Misclassification analysis of Japanese construction industry," European Journal of Operational Research, Elsevier, vol. 199(2), pages 576-594, December.
    14. Adrian Gepp & Kuldeep Kumar & Sukanto Bhattacharya, 2010. "Business failure prediction using decision trees," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(6), pages 536-555.
    15. Antonio David Somoza Lopez & Josep Vallverdu Calafell, 2003. "Una comparacion de la seleccion de los ratios contables en los modelos contable-financieros de prediccion de la insolvencia empresarial," Working Papers in Economics 94, Universitat de Barcelona. Espai de Recerca en Economia.
    16. Akarsh Kainth & Ranik Raaen Wahlstrøm, 2021. "Do IFRS Promote Transparency? Evidence from the Bankruptcy Prediction of Privately Held Swedish and Norwegian Companies," JRFM, MDPI, vol. 14(3), pages 1-15, March.
    17. Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
    18. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    19. Marialuisa Restaino & Marco Bisogno, 2019. "A Business Failure Index Using Rank Transformation," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 11(1), pages 56-65, January.
    20. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:108:y:1998:i:1:p:224-237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.