IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v21y2021i1d10.1007_s12351-019-00460-w.html
   My bibliography  Save this article

Restructuring hierarchical capacitated facility location problem with extended coverage radius under uncertainty

Author

Listed:
  • Mohammad Yavari

    (University of Qom)

  • Mohammad Mousavi-Saleh

    (University of Qom)

Abstract

The Restructuring Facility Location Problem (RFLP) seeks to locate facilities by resizing, closing, or opening new facilities, to provide the service required by the customers, at minimum total cost. All of the previous researches on RFLP had only single-level facilities. In the present study, we addressed a new problem of restructuring hierarchical facilities, named Extended Radius bi-levels Restructuring Capacitated Facility Location Problem (ER-RCFLP), comprising main and auxiliary facilities in the first and second levels, respectively. In ER-RCFLP, there is an extended coverage radius for the main facility which customers in the coverage radius of auxiliary facilities of the main facility can get service from the main facility. A mixed-integer linear program (MILP) has been projected to minimize the restructuring cost for the introduced problem. The proposed model, not only considers both closing down and opening new facilities, and addresses the problem of resizing open facilities, but also defines the auxiliary facilities in order to minimize the total cost. The auxiliary facility increases the coverage radius of the existing and new main facilities. Also, a robust MILP model has been developed for the ER-RCFLP problem under uncertainty of demand. The impact of auxiliary facilities in the network, impact of various decisions resizing, closing or opening main facilities, and impact of demand uncertainty have been studied through six experiments and 555 sample problems. Computational results related to deterministic problems indicate that opening auxiliary facilities in a single level network enjoys 24% reduction in total cost in average. Furthermore, in an existing hierarchical network of main and auxiliary facilities, resizing of auxiliary facilities has more effect on cost reduction in comparison with closing main facilities. Moreover for the networks under uncertainty, opening new auxiliary facilities has great effect on total cost reduction of network. In addition, establishing auxiliary facilities along with resizing main facilities have more impact on network cost reduction.

Suggested Citation

  • Mohammad Yavari & Mohammad Mousavi-Saleh, 2021. "Restructuring hierarchical capacitated facility location problem with extended coverage radius under uncertainty," Operational Research, Springer, vol. 21(1), pages 91-138, March.
  • Handle: RePEc:spr:operea:v:21:y:2021:i:1:d:10.1007_s12351-019-00460-w
    DOI: 10.1007/s12351-019-00460-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-019-00460-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-019-00460-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Marianov, Vladimir & Serra, Daniel, 2001. "Hierarchical location-allocation models for congested systems," European Journal of Operational Research, Elsevier, vol. 135(1), pages 195-208, November.
    3. Yolanda M. Carson & Rajan Batta, 1990. "Locating an Ambulance on the Amherst Campus of the State University of New York at Buffalo," Interfaces, INFORMS, vol. 20(5), pages 43-49, October.
    4. Xiquan Wang & Xingdong Zhang & Xiaohu Liu & Lijie Guo & Thomas Li & Jin Dong & Wenjun Yin & Ming Xie & Bin Zhang, 2012. "Branch Reconfiguration Practice Through Operations Research in Industrial and Commercial Bank of China," Interfaces, INFORMS, vol. 42(1), pages 33-44, February.
    5. Mestre, Ana Maria & Oliveira, Mónica Duarte & Barbosa-Póvoa, Ana Paula, 2015. "Location–allocation approaches for hospital network planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 240(3), pages 791-806.
    6. Narula, Subhash C., 1984. "Hierarchical location-allocation problems: A classification scheme," European Journal of Operational Research, Elsevier, vol. 15(1), pages 93-99, January.
    7. George C. Moore & Charles ReVelle, 1982. "The Hierarchical Service Location Problem," Management Science, INFORMS, vol. 28(7), pages 775-780, July.
    8. Oded Berman & David Simchi-Levi, 1990. "Technical Note—Conditional Location Problems on Networks," Transportation Science, INFORMS, vol. 24(1), pages 77-78, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karatas, Mumtaz & Eriskin, Levent, 2023. "Linear and piecewise linear formulations for a hierarchical facility location and sizing problem," Omega, Elsevier, vol. 118(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoon Jang, 2019. "Designing capacity rollout plan for neonatal care service system in Korea," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 809-830, September.
    2. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    3. Honora Smith & Daniel Cakebread & Maria Battarra & Ben Shelbourne & Naseem Cassim & Lindi Coetzee, 2017. "Location of a hierarchy of HIV/AIDS test laboratories in an inbound hub network: case study in South Africa," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 1068-1081, September.
    4. Jang, Hoon & Lee, Jun-Ho, 2019. "A hierarchical location model for determining capacities of neonatal intensive care units in Korea," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    5. Alexandris, George & Giannikos, Ioannis, 2010. "A new model for maximal coverage exploiting GIS capabilities," European Journal of Operational Research, Elsevier, vol. 202(2), pages 328-338, April.
    6. Galvao, Roberto D. & Acosta Espejo, Luis Gonzalo & Boffey, Brian & Yates, Derek, 2006. "Load balancing and capacity constraints in a hierarchical location model," European Journal of Operational Research, Elsevier, vol. 172(2), pages 631-646, July.
    7. Jayaraman, Vaidyanathan & Gupta, Rakesh & Pirkul, Hasan, 2003. "Selecting hierarchical facilities in a service-operations environment," European Journal of Operational Research, Elsevier, vol. 147(3), pages 613-628, June.
    8. Fadda, Edoardo & Manerba, Daniele & Tadei, Roberto, 2024. "How to locate services optimizing redundancy: A comparative analysis of K-Covering Facility Location models," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    9. Shang, Xiaoting & Zhang, Guoqing & Jia, Bin & Almanaseer, Mohammed, 2022. "The healthcare supply location-inventory-routing problem: A robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    10. Boffey, Brian & Galvao, Roberto & Espejo, Luis, 2007. "A review of congestion models in the location of facilities with immobile servers," European Journal of Operational Research, Elsevier, vol. 178(3), pages 643-662, May.
    11. Galvao, Roberto D. & Acosta Espejo, Luis Gonzalo & Boffey, Brian, 2002. "A hierarchical model for the location of perinatal facilities in the municipality of Rio de Janeiro," European Journal of Operational Research, Elsevier, vol. 138(3), pages 495-517, May.
    12. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    13. Ratick, Samuel J. & Osleeb, Jeffrey P. & Hozumi, Dai, 2009. "Application and extension of the Moore and ReVelle Hierarchical Maximal Covering Model," Socio-Economic Planning Sciences, Elsevier, vol. 43(2), pages 92-101, June.
    14. Karakaya, Şakir & Meral, Sedef, 2022. "A biobjective hierarchical location-allocation approach for the regionalization of maternal-neonatal care," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    15. Vahid Hajipour & Parviz Fattahi & Hasan Bagheri & Samaneh Babaei Morad, 2022. "Dynamic maximal covering location problem for fire stations under uncertainty: soft-computing approaches," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 90-112, February.
    16. Dominic J. Breuer & Shashank Kapadia & Nadia Lahrichi & James C. Benneyan, 2022. "Joint robust optimization of bed capacity, nurse staffing, and care access under uncertainty," Annals of Operations Research, Springer, vol. 312(2), pages 673-689, May.
    17. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    18. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    19. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    20. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:21:y:2021:i:1:d:10.1007_s12351-019-00460-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.