IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i23p7245-7258.html
   My bibliography  Save this article

Dynamic recovery policies for time-critical supply chains under conditions of ripple effect

Author

Listed:
  • Dmitry Ivanov
  • Boris Sokolov
  • Inna Solovyeva
  • Alexandre Dolgui
  • Ferry Jie

Abstract

We consider time-critical supply chains (SCs) in the Australia dairy industry and recovery policies in the presence of the ripple effect. Ripple effect is the impact of a disruption on SC economic performance and disruption-based scope of changes needed in the supply structures and parameters to preserve the resilience. First, we describe the ripple effect in general and one example of the ripple effect in the dairy SC in Australia. Second, we present a model for reactive recovery policies in the dairy SC under conditions of the ripple effect and exemplify them on a simulation example. The results of this study can be used in future for comparing proactive and reactive approaches in tackling the ripple effect from resilience and flexibility views.

Suggested Citation

  • Dmitry Ivanov & Boris Sokolov & Inna Solovyeva & Alexandre Dolgui & Ferry Jie, 2016. "Dynamic recovery policies for time-critical supply chains under conditions of ripple effect," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7245-7258, December.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:23:p:7245-7258
    DOI: 10.1080/00207543.2016.1161253
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1161253
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1161253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivanov, Dmitry & Sokolov, Boris, 2013. "Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty," European Journal of Operational Research, Elsevier, vol. 224(2), pages 313-323.
    2. Baghalian, Atefeh & Rezapour, Shabnam & Farahani, Reza Zanjirani, 2013. "Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case," European Journal of Operational Research, Elsevier, vol. 227(1), pages 199-215.
    3. Ivanov, Dmitry & Pavlov, Alexander & Dolgui, Alexandre & Pavlov, Dmitry & Sokolov, Boris, 2016. "Disruption-driven supply chain (re)-planning and performance impact assessment with consideration of pro-active and recovery policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 7-24.
    4. Ivanov, Dmitry & Sokolov, Boris & Kaeschel, Joachim, 2010. "A multi-structural framework for adaptive supply chain planning and operations control with structure dynamics considerations," European Journal of Operational Research, Elsevier, vol. 200(2), pages 409-420, January.
    5. Brian Tomlin, 2006. "On the Value of Mitigation and Contingency Strategies for Managing Supply Chain Disruption Risks," Management Science, INFORMS, vol. 52(5), pages 639-657, May.
    6. Peng, Peng & Snyder, Lawrence V. & Lim, Andrew & Liu, Zuli, 2011. "Reliable logistics networks design with facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1190-1211, September.
    7. Paul, Sanjoy Kumar & Sarker, Ruhul & Essam, Daryl, 2014. "Real time disruption management for a two-stage batch production–inventory system with reliability considerations," European Journal of Operational Research, Elsevier, vol. 237(1), pages 113-128.
    8. Kevin B. Hendricks & Vinod R. Singhal, 2005. "Association Between Supply Chain Glitches and Operating Performance," Management Science, INFORMS, vol. 51(5), pages 695-711, May.
    9. Klibi, Walid & Martel, Alain & Guitouni, Adel, 2010. "The design of robust value-creating supply chain networks: A critical review," European Journal of Operational Research, Elsevier, vol. 203(2), pages 283-293, June.
    10. Sang-Hyun Kim & Brian Tomlin, 2013. "Guilt by Association: Strategic Failure Prevention and Recovery Capacity Investments," Management Science, INFORMS, vol. 59(7), pages 1631-1649, July.
    11. Editors, 2014. "International Journal of Systems Science," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(12), pages 1-1, December.
    12. Ivanov, Dmitry & Pavlov, Alexander & Sokolov, Boris, 2014. "Optimal distribution (re)planning in a centralized multi-stage supply network under conditions of the ripple effect and structure dynamics," European Journal of Operational Research, Elsevier, vol. 237(2), pages 758-770.
    13. Garcia, C.A. & Ibeas, A. & Herrera, J. & Vilanova, R., 2012. "Inventory control for the supply chain: An adaptive control approach based on the identification of the lead-time," Omega, Elsevier, vol. 40(3), pages 314-327.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dmitry Ivanov, 2017. "Simulation-based ripple effect modelling in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2083-2101, April.
    2. Beatriz Andres & Giulio Marcucci, 2020. "A Strategies Alignment Approach to Manage Disruptive Events in Collaborative Networks," Sustainability, MDPI, vol. 12(7), pages 1-23, March.
    3. Zhinan Li & Qinming Liu & Chunming Ye & Ming Dong & Yihan Zheng, 2022. "Achieving Resilience: Resilient Price and Quality Strategies of Fresh Food Dual-Channel Supply Chain Considering the Disruption," Sustainability, MDPI, vol. 14(11), pages 1-24, May.
    4. Can Ding & Li Liu & Yi Zheng & Jianxiu Liao & Wenxing Huang, 2022. "Role of Distribution Centers Disruptions in New Retail Supply Chain: An Analysis Experiment," Sustainability, MDPI, vol. 14(11), pages 1-17, May.
    5. Li, Yuhong & Zobel, Christopher W. & Seref, Onur & Chatfield, Dean, 2020. "Network characteristics and supply chain resilience under conditions of risk propagation," International Journal of Production Economics, Elsevier, vol. 223(C).
    6. Dmitry Ivanov & Maxim Rozhkov, 2020. "Coordination of production and ordering policies under capacity disruption and product write-off risk: an analytical study with real-data based simulations of a fast moving consumer goods company," Annals of Operations Research, Springer, vol. 291(1), pages 387-407, August.
    7. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    8. Garvey, Myles D. & Carnovale, Steven, 2020. "The rippled newsvendor: A new inventory framework for modeling supply chain risk severity in the presence of risk propagation," International Journal of Production Economics, Elsevier, vol. 228(C).
    9. K. Katsaliaki & P. Galetsi & S. Kumar, 2022. "Supply chain disruptions and resilience: a major review and future research agenda," Annals of Operations Research, Springer, vol. 319(1), pages 965-1002, December.
    10. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon, 2020. "On metrics for supply chain resilience," European Journal of Operational Research, Elsevier, vol. 287(1), pages 145-158.
    11. Niloofar Etemadi & Pieter Van Gelder & Fernanda Strozzi, 2021. "An ISM Modeling of Barriers for Blockchain/Distributed Ledger Technology Adoption in Supply Chains towards Cybersecurity," Sustainability, MDPI, vol. 13(9), pages 1-28, April.
    12. Liu, Ming & Liu, Zhongzheng & Chu, Feng & Dolgui, Alexandre & Chu, Chengbin & Zheng, Feifeng, 2022. "An optimization approach for multi-echelon supply chain viability with disruption risk minimization," Omega, Elsevier, vol. 112(C).
    13. Behzadi, Golnar & O'Sullivan, Michael Justin & Olsen, Tava Lennon & Scrimgeour, Frank & Zhang, Abraham, 2017. "Robust and resilient strategies for managing supply disruptions in an agribusiness supply chain," International Journal of Production Economics, Elsevier, vol. 191(C), pages 207-220.
    14. Pritee Ray, 2021. "Agricultural Supply Chain Risk Management Under Price and Demand Uncertainty," International Journal of System Dynamics Applications (IJSDA), IGI Global, vol. 10(2), pages 17-32, April.
    15. Salvatore Ammirato & Alberto Michele Felicetti & Massimiliano Ferrara & Cinzia Raso & Antonio Violi, 2021. "Collaborative Organization Models for Sustainable Development in the Agri-Food Sector," Sustainability, MDPI, vol. 13(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Marina Ivanova, 2017. "Literature review on disruption recovery in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6158-6174, October.
    2. Ivanov, Dmitry & Pavlov, Alexander & Dolgui, Alexandre & Pavlov, Dmitry & Sokolov, Boris, 2016. "Disruption-driven supply chain (re)-planning and performance impact assessment with consideration of pro-active and recovery policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 7-24.
    3. Ivanov, Dmitry & Pavlov, Alexander & Sokolov, Boris, 2014. "Optimal distribution (re)planning in a centralized multi-stage supply network under conditions of the ripple effect and structure dynamics," European Journal of Operational Research, Elsevier, vol. 237(2), pages 758-770.
    4. Dmitry Ivanov & Richard Hartl & Alexandre Dolgui & Alexander Pavlov & Boris Sokolov, 2015. "Integration of aggregate distribution and dynamic transportation planning in a supply chain with capacity disruptions and the ripple effect consideration," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 6963-6979, December.
    5. Gao, Long, 2015. "Collaborative forecasting, inventory hedging and contract coordination in dynamic supply risk management," European Journal of Operational Research, Elsevier, vol. 245(1), pages 133-145.
    6. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    7. Dmitry Ivanov & Maxim Rozhkov, 2020. "Coordination of production and ordering policies under capacity disruption and product write-off risk: an analytical study with real-data based simulations of a fast moving consumer goods company," Annals of Operations Research, Springer, vol. 291(1), pages 387-407, August.
    8. Dmitry Ivanov, 2017. "Simulation-based ripple effect modelling in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2083-2101, April.
    9. Rezapour, Shabnam & Farahani, Reza Zanjirani & Pourakbar, Morteza, 2017. "Resilient supply chain network design under competition: A case study," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1017-1035.
    10. Ivanov, Dmitry & Sokolov, Boris, 2013. "Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty," European Journal of Operational Research, Elsevier, vol. 224(2), pages 313-323.
    11. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    12. Ivanov, Dmitry & Pavlov, Alexander & Pavlov, Dmitry & Sokolov, Boris, 2017. "Minimization of disruption-related return flows in the supply chain," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 503-513.
    13. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    14. Fattahi, Mohammad & Govindan, Kannan & Maihami, Reza, 2020. "Stochastic optimization of disruption-driven supply chain network design with a new resilience metric," International Journal of Production Economics, Elsevier, vol. 230(C).
    15. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon & Zhang, Abraham, 2018. "Agribusiness supply chain risk management: A review of quantitative decision models," Omega, Elsevier, vol. 79(C), pages 21-42.
    16. Sanjoy Kumar Paul & Ruhul Sarker & Daryl Essam & Paul Tae-Woo Lee, 2019. "A mathematical modelling approach for managing sudden disturbances in a three-tier manufacturing supply chain," Annals of Operations Research, Springer, vol. 280(1), pages 299-335, September.
    17. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    18. Ghavamifar, Ali & Makui, Ahmad & Taleizadeh, Ata Allah, 2018. "Designing a resilient competitive supply chain network under disruption risks: A real-world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 87-109.
    19. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.
    20. Mizgier, Kamil J. & Wagner, Stephan M. & Jüttner, Matthias P., 2015. "Disentangling diversification in supply chain networks," International Journal of Production Economics, Elsevier, vol. 162(C), pages 115-124.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:23:p:7245-7258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.