IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v110y2022ics0305048322000391.html
   My bibliography  Save this article

Incorporating quality in economic regulatory benchmarking

Author

Listed:
  • Heesche, Emil
  • Asmild, Mette

Abstract

The Danish water regulator uses, amongst other things, Data Envelopment Analysis to create a pseudo-competitive environment for the water companies. The benchmarking results are used to set an individual revenue cap for each company. The benchmarking model is currently criticised for not including the companies’ supply quality and thereby having an omitted variable bias problem. One problem the regulator has encountered when trying to incorporate supply quality in the benchmarking model is that it tends to increase the revenue caps more than desired. The regulator does, however, not have any prior information about the marginal rates of substitution between the quality variables and costs, which makes it challenging to reduce the supply quality's impact on the revenue caps.

Suggested Citation

  • Heesche, Emil & Asmild, Mette, 2022. "Incorporating quality in economic regulatory benchmarking," Omega, Elsevier, vol. 110(C).
  • Handle: RePEc:eee:jomega:v:110:y:2022:i:c:s0305048322000391
    DOI: 10.1016/j.omega.2022.102630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048322000391
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2022.102630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. PER AGRELL & Peter Bogetoft & Jørgen Tind, 2005. "DEA and Dynamic Yardstick Competition in Scandinavian Electricity Distribution," Journal of Productivity Analysis, Springer, vol. 23(2), pages 173-201, May.
    2. V V Podinovski, 2004. "Production trade-offs and weight restrictions in data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1311-1322, December.
    3. Yang, Hongliang & Pollitt, Michael, 2009. "Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1095-1105, September.
    4. Ole B. Olesen & Niels Chr. Petersen, 2015. "Facet Analysis in Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 6, pages 145-190, Springer.
    5. S P Santos & C A F Amado & J R Rosado, 2011. "Formative evaluation of electricity distribution utilities using data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1298-1319, July.
    6. Ramanathan, Ramakrishnan & Ramanathan, Usha & Bentley, Yongmei, 2018. "The debate on flexibility of environmental regulations, innovation capabilities and financial performance – A novel use of DEA," Omega, Elsevier, vol. 75(C), pages 131-138.
    7. Sahoo, Biresh K. & Luptacik, Mikulas & Mahlberg, Bernhard, 2011. "Alternative measures of environmental technology structure in DEA: An application," European Journal of Operational Research, Elsevier, vol. 215(3), pages 750-762, December.
    8. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    9. María Molinos-Senante & Manuel Mocholi-Arce & Ramón Sala-Garrido, 2016. "Efficiency Assessment of Water and Sewerage Companies: a Disaggregated Approach Accounting for Service Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4311-4328, September.
    10. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    11. Emil Heesche & Mette Asmild, 2020. "Controlling for environmental conditions in regulatory benchmarking," IFRO Working Paper 2020/03, University of Copenhagen, Department of Food and Resource Economics.
    12. Podinovski, Victor V. & Kuosmanen, Timo, 2011. "Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions," European Journal of Operational Research, Elsevier, vol. 211(3), pages 577-585, June.
    13. Asmild, Mette & Paradi, Joseph C. & Reese, David N., 2006. "Theoretical perspectives of trade-off analysis using DEA," Omega, Elsevier, vol. 34(4), pages 337-343, August.
    14. Hubert, M. & Vandervieren, E., 2008. "An adjusted boxplot for skewed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5186-5201, August.
    15. Serge Garcia & Alban Thomas, 2001. "The Structure of Municipal Water Supply Costs: Application to a Panel of French Local Communities," Journal of Productivity Analysis, Springer, vol. 16(1), pages 5-29, July.
    16. Fare, R. & Grosskopf, S. & Pasurka, C., 1986. "Effects on relative efficiency in electric power generation due to environmental controls," Resources and Energy, Elsevier, vol. 8(2), pages 167-184, June.
    17. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    18. Podinovski, Victor V., 2019. "Direct estimation of marginal characteristics of nonparametric production frontiers in the presence of undesirable outputs," European Journal of Operational Research, Elsevier, vol. 279(1), pages 258-276.
    19. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    20. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
    21. Rita Martins & Fernando Coelho & Adelino Fortunato, 2012. "Water losses and hydrographical regions influence on the cost structure of the Portuguese water industry," Journal of Productivity Analysis, Springer, vol. 38(1), pages 81-94, August.
    22. O. B. Olesen & N. C. Petersen, 1996. "Indicators of Ill-Conditioned Data Sets and Model Misspecification in Data Envelopment Analysis: An Extended Facet Approach," Management Science, INFORMS, vol. 42(2), pages 205-219, February.
    23. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    24. Ole Olesen & N. Petersen, 2003. "Identification and Use of Efficient Faces and Facets in DEA," Journal of Productivity Analysis, Springer, vol. 20(3), pages 323-360, November.
    25. Peter Bogetoft & Lars Otto, 2011. "Benchmarking with DEA, SFA, and R," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7961-2, December.
    26. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    27. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
    28. Scheel, Holger, 2001. "Undesirable outputs in efficiency valuations," European Journal of Operational Research, Elsevier, vol. 132(2), pages 400-410, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aigner, Lorenz & Asmild, Mette, 2023. "Identifying the most important set of weights when modelling bad outputs with the weak disposability approach," European Journal of Operational Research, Elsevier, vol. 310(2), pages 751-759.
    2. Wang, Yu & Li, Minqiang & Feng, Haiyang & Feng, Nan, 2023. "Which is better for competing firms with quality increasing: behavior-based price discrimination or uniform pricing?," Omega, Elsevier, vol. 118(C).
    3. Heesche, Emil & Asmild, Mette, 2022. "Controlling for environmental conditions in regulatory benchmarking," Utilities Policy, Elsevier, vol. 77(C).
    4. Yang, Fan & Lee, Hyoungsuk, 2022. "An innovative provincial CO2 emission quota allocation scheme for Chinese low-carbon transition," Technological Forecasting and Social Change, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emil Heesche & Mette Asmild, 2020. "Incorporating quality in economic regulatory benchmarking," IFRO Working Paper 2020/13, University of Copenhagen, Department of Food and Resource Economics.
    2. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    3. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    4. Roshdi, Israfil & Hasannasab, Maryam & Margaritis, Dimitris & Rouse, Paul, 2018. "Generalised weak disposability and efficiency measurement in environmental technologies," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1000-1012.
    5. OA Carboni & P. Russu, 2014. "Measuring Environmental and Economic Efficiency in Italy: an Application of the Malmquist-DEA and Grey Forecasting Model," Working Paper CRENoS 201401, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    6. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
    7. Dakpo, Hervé K & Jeanneaux, Philippe & Latruffe, Laure, 2014. "Inclusion of undesirable outputs in production technology modeling: The case of greenhouse gas emissions in French meat sheep farming," Working Papers 207806, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    8. Amirteimoori, Alireza & Kazemi Matin, Reza & Yadollahi, Amir Hossein, 2024. "Stochastic resource reallocation in two-stage production processes with undesirable outputs: An empirical study on the power industry," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    9. Oliviero A. Carboni & Paolo Russu, 2018. "Measuring and forecasting regional environmental and economic efficiency in Italy," Applied Economics, Taylor & Francis Journals, vol. 50(4), pages 335-353, January.
    10. Mehdiloo, Mahmood & Podinovski, Victor V., 2021. "Strong, weak and Farrell efficient frontiers of technologies satisfying different production assumptions," European Journal of Operational Research, Elsevier, vol. 294(1), pages 295-311.
    11. Zhang, Chunhong & Liu, Haiying & Bressers, Hans Th.A. & Buchanan, Karen S., 2011. "Productivity growth and environmental regulations - accounting for undesirable outputs: Analysis of China's thirty provincial regions using the Malmquist–Luenberger index," Ecological Economics, Elsevier, vol. 70(12), pages 2369-2379.
    12. Barnabé Walheer, 2020. "Output, input, and undesirable output interconnections in data envelopment analysis: convexity and returns-to-scale," Annals of Operations Research, Springer, vol. 284(1), pages 447-467, January.
    13. Abad, Arnaud & Briec, Walter, 2019. "On the axiomatic of pollution-generating technologies: Non-parametric production analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 377-390.
    14. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    15. Harald Dyckhoff & Rainer Souren, 2023. "Are important phenomena of joint production still being neglected by economic theory? A review of recent literature," Journal of Business Economics, Springer, vol. 93(6), pages 1015-1053, August.
    16. Ke Wang & Yi-Ming Wei & Zhimin Huang, 2017. "Environmental efficiency and abatement efficiency measurements of China¡¯s thermal power industry: A data envelopment analysis based materials balance approach," CEEP-BIT Working Papers 108, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    17. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    18. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    19. Cordero Ferrera, Jose Manuel & Alonso Morán, Edurne & Nuño Solís, Roberto & Orueta, Juan F. & Souto Arce, Regina, 2013. "Efficiency assessment of primary care providers: A conditional nonparametric approach," MPRA Paper 51926, University Library of Munich, Germany.
    20. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:110:y:2022:i:c:s0305048322000391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.