IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v266y2018i3p1000-1012.html
   My bibliography  Save this article

Generalised weak disposability and efficiency measurement in environmental technologies

Author

Listed:
  • Roshdi, Israfil
  • Hasannasab, Maryam
  • Margaritis, Dimitris
  • Rouse, Paul

Abstract

Weak disposability based models of environmental technologies typically assume equiproportionate trade-offs between desired and undesired outputs. We postulate a generalised version of weak disposability allowing for different types of trade-offs between good and bad outputs and derive a new technology called piecewise Cobb–Douglas environmental technology whose envelopments capture all three types of production structures – concavity, linearity, and convexity. To measure environmental performance with reference to this technology, we develop radial and non-radial directional hyperbolic distance functions. We demonstrate that the value of these functions can be simply computed via the directional distance function as linear programs. We use data from 112 US power plants to illustrate our approach.

Suggested Citation

  • Roshdi, Israfil & Hasannasab, Maryam & Margaritis, Dimitris & Rouse, Paul, 2018. "Generalised weak disposability and efficiency measurement in environmental technologies," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1000-1012.
  • Handle: RePEc:eee:ejores:v:266:y:2018:i:3:p:1000-1012
    DOI: 10.1016/j.ejor.2017.10.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717309463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.10.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ebert, Udo & Welsch, Heinz, 2004. "Meaningful environmental indices: a social choice approach," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 270-283, March.
    2. Cuesta, Rafael A. & Lovell, C.A. Knox & Zofío, José L., 2009. "Environmental efficiency measurement with translog distance functions: A parametric approach," Ecological Economics, Elsevier, vol. 68(8-9), pages 2232-2242, June.
    3. Yang, Hongliang & Pollitt, Michael, 2009. "Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1095-1105, September.
    4. Hampf, Benjamin & Løvold Rødseth, Kenneth, 2014. "Carbon Dioxide Emission Standards for U.S. Power Plants: An Efficiency Analysis Perspective," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63809, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Sueyoshi, Toshiyuki & Goto, Mika, 2010. "Should the US clean air act include CO2 emission control?: Examination by data envelopment analysis," Energy Policy, Elsevier, vol. 38(10), pages 5902-5911, October.
    6. Sushama Murty & R. Robert Russell, 2018. "Modeling emission-generating technologies: reconciliation of axiomatic and by-production approaches," Empirical Economics, Springer, vol. 54(1), pages 7-30, February.
    7. Montero, Juan-Pablo, 2001. "Multipollutant Markets," RAND Journal of Economics, The RAND Corporation, vol. 32(4), pages 762-774, Winter.
    8. Sahoo, Biresh K. & Luptacik, Mikulas & Mahlberg, Bernhard, 2011. "Alternative measures of environmental technology structure in DEA: An application," European Journal of Operational Research, Elsevier, vol. 215(3), pages 750-762, December.
    9. Knox Lovell, C. A. & Pastor, Jesus T. & Turner, Judi A., 1995. "Measuring macroeconomic performance in the OECD: A comparison of European and non-European countries," European Journal of Operational Research, Elsevier, vol. 87(3), pages 507-518, December.
    10. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    11. Fare, R. & Grosskopf, S. & Pasurka, C., 1986. "Effects on relative efficiency in electric power generation due to environmental controls," Resources and Energy, Elsevier, vol. 8(2), pages 167-184, June.
    12. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2014. "Carbon Dioxide Emission Standards for U.S. Power Plants: An Efficiency Analysis Perspective," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63820, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Tim Coelli & Ludwig Lauwers & Guido Huylenbroeck, 2007. "Environmental efficiency measurement and the materials balance condition," Journal of Productivity Analysis, Springer, vol. 28(1), pages 3-12, October.
    14. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    15. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    16. Luenberger, David G., 1992. "Benefit functions and duality," Journal of Mathematical Economics, Elsevier, vol. 21(5), pages 461-481.
    17. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
    18. Mahlberg, Bernhard & Sahoo, Biresh K., 2011. "Radial and non-radial decompositions of Luenberger productivity indicator with an illustrative application," International Journal of Production Economics, Elsevier, vol. 131(2), pages 721-726, June.
    19. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    20. Chris Tofallis, 2014. "On constructing a composite indicator with multiplicative aggregation and the avoidance of zero weights in DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(5), pages 791-792, May.
    21. Valadkhani, Abbas & Roshdi, Israfil & Smyth, Russell, 2016. "A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters," Energy Economics, Elsevier, vol. 54(C), pages 363-375.
    22. Lauwers, Ludwig H. & Van Huylenbroeck, Guido, 2003. "Materials Balance Based Modelling Of Environmental Efficiency," 2003 Annual Meeting, August 16-22, 2003, Durban, South Africa 25916, International Association of Agricultural Economists.
    23. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2014. "Carbon dioxide emission standards for US power plants: An efficiency analysis perspective," Darmstadt Discussion Papers in Economics 219, Darmstadt University of Technology, Department of Law and Economics.
    24. Rolf Färe & Shawna Grosskopf, 2003. "Nonparametric Productivity Analysis with Undesirable Outputs: Comment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 1070-1074.
    25. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    26. Sushama Murty, 2015. "On the properties of an emission-generating technology and its parametric representation," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 243-282, October.
    27. Färe, Rolf & Margaritis, Dimitris & Rouse, Paul & Roshdi, Israfil, 2016. "Estimating the hyperbolic distance function: A directional distance function approach," European Journal of Operational Research, Elsevier, vol. 254(1), pages 312-319.
    28. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    29. Rajiv D. Banker & Ajay Maindiratta, 1986. "Piecewise Loglinear Estimation of Efficient Production Surfaces," Management Science, INFORMS, vol. 32(1), pages 126-135, January.
    30. Sueyoshi, Toshiyuki & Goto, Mika & Ueno, Takahiro, 2010. "Performance analysis of US coal-fired power plants by measuring three DEA efficiencies," Energy Policy, Elsevier, vol. 38(4), pages 1675-1688, April.
    31. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    32. Mehdiloozad, Mahmood & Sahoo, Biresh K. & Roshdi, Israfil, 2014. "A generalized multiplicative directional distance function for efficiency measurement in DEA," European Journal of Operational Research, Elsevier, vol. 232(3), pages 679-688.
    33. Kuosmanen, Timo & Kazemi Matin, Reza, 2011. "Duality of weakly disposable technology," Omega, Elsevier, vol. 39(5), pages 504-512, October.
    34. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    35. Rajiv D. Banker & Ajay Maindiratta, 1986. "Erratum to: "Piecewise Loglinear Estimation of Efficient Production Surfaces"," Management Science, INFORMS, vol. 32(3), pages 385-385, March.
    36. Antonio Peyrache Tim Coelli & Tim Coelli, 2009. "A Multiplicative Directional Distance Function," CEPA Working Papers Series WP022009, School of Economics, University of Queensland, Australia.
    37. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
    38. Scheel, Holger, 2001. "Undesirable outputs in efficiency valuations," European Journal of Operational Research, Elsevier, vol. 132(2), pages 400-410, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Zhiyang & Wu, Haitao & Bai, Kaixuan & Hao, Yu, 2022. "Integrating economic, environmental and societal performance within the productivity measurement," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    2. Briec, Walter & Fukuyama, Hirofumi & Ravelojaona, Paola, 2021. "Exponential distance function and duality theory," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1002-1014.
    3. Layer, Kevin & Johnson, Andrew L. & Sickles, Robin C. & Ferrier, Gary D., 2020. "Direction selection in stochastic directional distance functions," European Journal of Operational Research, Elsevier, vol. 280(1), pages 351-364.
    4. Shen, Zhiyang & Bai, Kaixuan & Hong, Tianyang & Balezentis, Tomas, 2021. "Evaluation of carbon shadow price within a non-parametric meta-frontier framework: The case of OECD, ASEAN and BRICS," Applied Energy, Elsevier, vol. 299(C).
    5. Olesen, O.B. & Ruggiero, J., 2022. "The hinging hyperplanes: An alternative nonparametric representation of a production function," European Journal of Operational Research, Elsevier, vol. 296(1), pages 254-266.
    6. Halická, Margaréta & Trnovská, Mária & Černý, Aleš, 2024. "A unified approach to radial, hyperbolic, and directional efficiency measurement in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 312(1), pages 298-314.
    7. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    8. Qingyou Yan & Xu Wang & Tomas Baležentis & Dalia Streimikiene, 2018. "Energy–economy–environmental (3E) performance of Chinese regions based on the data envelopment analysis model with mixed assumptions on disposability," Energy & Environment, , vol. 29(5), pages 664-684, August.
    9. Tao, Xiangyang & An, Qingxian & Goh, Mark, 2024. "Plant capacity utilization with piecewise Cobb-Douglas technology: Definition and interpretation," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1034-1043.
    10. Halická, Margaréta & Trnovská, Mária, 2021. "A unified approach to non-radial graph models in data envelopment analysis: common features, geometry, and duality," European Journal of Operational Research, Elsevier, vol. 289(2), pages 611-627.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    2. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    3. Abad, Arnaud & Briec, Walter, 2019. "On the axiomatic of pollution-generating technologies: Non-parametric production analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 377-390.
    4. Dakpo, Hervé K & Jeanneaux, Philippe & Latruffe, Laure, 2014. "Inclusion of undesirable outputs in production technology modeling: The case of greenhouse gas emissions in French meat sheep farming," Working Papers 207806, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    5. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    6. Aparicio, Juan & Kapelko, Magdalena & Zofío, José L., 2020. "The measurement of environmental economic inefficiency with pollution-generating technologies," Resource and Energy Economics, Elsevier, vol. 62(C).
    7. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
    8. Shen, Zhiyang & Bai, Kaixuan & Hong, Tianyang & Balezentis, Tomas, 2021. "Evaluation of carbon shadow price within a non-parametric meta-frontier framework: The case of OECD, ASEAN and BRICS," Applied Energy, Elsevier, vol. 299(C).
    9. Dakpo, K & Jeanneaux, Philippe & Latruffee, Laure, 2015. "Empirical comparison of pollution generating technologies in nonparametric modelling: The case of greenhouse gas emissions in French sheep meat farming," 2015 Conference, August 9-14, 2015, Milan, Italy 211557, International Association of Agricultural Economists.
    10. Ke Wang & Yi-Ming Wei & Zhimin Huang, 2017. "Environmental efficiency and abatement efficiency measurements of China¡¯s thermal power industry: A data envelopment analysis based materials balance approach," CEEP-BIT Working Papers 108, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    11. Subhash C. Ray & Shilpa Sethia, 2024. "A state-level resource allocation model for emission reduction and efficiency improvement in thermal power plants," Indian Economic Review, Springer, vol. 59(1), pages 205-257, October.
    12. Margaréta Halická & Mária Trnovská, 2018. "Negative features of hyperbolic and directional distance models for technologies with undesirable outputs," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 887-907, December.
    13. Fang, Lei, 2020. "Opening the “black box” of environmental production technology in a nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 286(2), pages 769-780.
    14. Andreas Eder, 2022. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Journal of Productivity Analysis, Springer, vol. 57(2), pages 157-176, April.
    15. Andreas Eder, 2021. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Working Papers 752021, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    16. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2024. "A unified framework for nonperforming loan modeling in bank production: An application of data envelopment analysis," Omega, Elsevier, vol. 126(C).
    17. repec:zbw:inwedp:752021 is not listed on IDEAS
    18. Valadkhani, Abbas & Roshdi, Israfil & Smyth, Russell, 2016. "A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters," Energy Economics, Elsevier, vol. 54(C), pages 363-375.
    19. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    20. Lee, Chia-Yen, 2018. "Mixed-strategy Nash equilibrium in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1013-1024.
    21. Harald Dyckhoff & Rainer Souren, 2023. "Are important phenomena of joint production still being neglected by economic theory? A review of recent literature," Journal of Business Economics, Springer, vol. 93(6), pages 1015-1053, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:266:y:2018:i:3:p:1000-1012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.